|
|
从局域应力/应变视角理解异构金属材料的强韧化行为 |
范国华1, 缪克松1( ), 李丹阳2, 夏夷平3, 吴昊1 |
1.南京工业大学 先进轻质高性能材料研究中心 南京 211816 2.哈尔滨工业大学 空间环境与物质科学研究院 哈尔滨 150001 3.哈尔滨工业大学 材料科学与工程学院 哈尔滨 150001 |
|
Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain |
FAN Guohua1, MIAO Kesong1( ), LI Danyang2, XIA Yiping3, WU Hao1 |
1.Key Laboratory for Light-weight Materials, Nanjing Tech University, Nanjing 211816, China 2.Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China 3.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China |
引用本文:
范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
Guohua FAN,
Kesong MIAO,
Danyang LI,
Yiping XIA,
Hao WU.
Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. Acta Metall Sin, 2022, 58(11): 1427-1440.
1 |
Lu K. The future of metals [J]. Science, 2010, 328: 319
doi: 10.1126/science.1185866
pmid: 20395503
|
2 |
Fu Z Q, MacDonald B E, Zhang D L, et al. Fcc nanostructured TiFeCoNi alloy with multi-scale grains and enhanced plasticity [J]. Scr. Mater., 2018, 143: 108
doi: 10.1016/j.scriptamat.2017.09.023
|
3 |
Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
|
4 |
Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544
pmid: 23353630
|
5 |
Gao H J, Ji B H, Jäger I L, et al. Materials become insensitive to flaws at nanoscale: Lessons from nature [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 5597
doi: 10.1073/pnas.0631609100
|
6 |
Suresh S. Graded materials for resistance to contact deformation and damage [J]. Science, 2001, 292: 2447
pmid: 11431558
|
7 |
Wu X L, Zhu Y T. Gradient and lamellar heterostructures for superior mechanical properties [J]. MRS Bull., 2021, 46: 244
|
8 |
Zhu Y T. Introduction to heterostructured materials: A fast emerging field [J]. Metall. Mater. Trans., 2021, 52A: 4715
|
9 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
10 |
Wang G, Ouyang H, Su Y S, et al. Heterostructured bulk aluminum with controllable gradient structure: Fabrication strategy and deformation mechanisms [J]. Scr. Mater., 2021, 196: 113762
doi: 10.1016/j.scriptamat.2021.113762
|
11 |
Yuan S Q, Gan B, Qian L, et al. Gradient nanotwinned CrCoNi medium-entropy alloy with strength-ductility synergy [J]. Scr. Mater., 2021, 203: 114117
doi: 10.1016/j.scriptamat.2021.114117
|
12 |
Cheng Z, Bu L F, Zhang Y, et al. Unraveling the origin of extra strengthening in gradient nanotwinned metals [J]. Proc. Natl. Acad. Sci. USA, 2022, 119: e2116808119
doi: 10.1073/pnas.2116808119
|
13 |
Dong S J, Chen T J, Huang S X, et al. Thickness-dependent shear localization in Cu/Nb metallic nanolayered composites [J]. Scr. Mater., 2020, 187: 323
doi: 10.1016/j.scriptamat.2020.06.049
|
14 |
Wu H, Huang M, Li X W, et al. Temperature-dependent reversed fracture behavior of multilayered TiBw/Ti-Ti(Al) composites [J]. Int. J. Plast., 2021, 141: 102998
doi: 10.1016/j.ijplas.2021.102998
|
15 |
Xia Y P, Miao K S, Wu H, et al. Superior strength-ductility synergy of layered aluminum under uniaxial tensile loading: The roles of local stress state and local strain state [J]. Int. J. Plast., 2022, 152: 103240
doi: 10.1016/j.ijplas.2022.103240
|
16 |
Vajpai S K, Ota M, Zhang Z, et al. Three-dimensionally gradient harmonic structure design: An integrated approach for high performance structural materials [J]. Mater. Res. Lett., 2016, 4: 191
doi: 10.1080/21663831.2016.1218965
|
17 |
Park H K, Ameyama K, Yoo J, et al. Additional hardening in harmonic structured materials by strain partitioning and back stress [J]. Mater. Res. Lett., 2018, 6: 261
doi: 10.1080/21663831.2018.1439115
|
18 |
Peng H X, Fan Z, Evans J R G. Bi-continuous metal matrix composites [J]. Mater. Sci. Eng., 2001, A303: 37
|
19 |
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940
pmid: 25237091
|
20 |
Yang M X, Li R G, Jiang P, et al. Residual stress provides significant strengthening and ductility in gradient structured materials [J]. Mater. Res. Lett., 2019, 7: 433
doi: 10.1080/21663831.2019.1635537
|
21 |
Long J Z, Pan Q S, Tao N R, et al. Residual stress induced tension-compression asymmetry of gradient nanograined copper [J]. Mater. Res. Lett., 2018, 6: 456
doi: 10.1080/21663831.2018.1478898
|
22 |
Antolovich S D, Armstrong R W. Plastic strain localization in metals: Origins and consequences [J]. Prog. Mater. Sci., 2014, 59: 1
doi: 10.1016/j.pmatsci.2013.06.001
|
23 |
Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
doi: 10.1016/j.pmatsci.2020.100675
|
24 |
Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
|
25 |
Wang Y F, Huang C X, Fang X T, et al. Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient [J]. Scr. Mater., 2020, 174: 19
doi: 10.1016/j.scriptamat.2019.08.022
|
26 |
Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
|
27 |
Frint P, Wagner M F X. Strain partitioning by recurrent shear localization during equal-channel angular pressing of an AA6060 aluminum alloy [J]. Acta Mater., 2019, 176: 306
doi: 10.1016/j.actamat.2019.07.009
|
28 |
Liu H S, Zhang B, Zhang G P. Delaying premature local necking of high-strength Cu: A potential way to enhance plasticity [J]. Scr. Mater., 2011, 64: 13
doi: 10.1016/j.scriptamat.2010.08.049
|
29 |
Liang F, Tan H F, Zhang B, et al. Maximizing necking-delayed fracture of sandwich-structured Ni/Cu/Ni composites [J]. Scr. Mater., 2017, 134: 28
doi: 10.1016/j.scriptamat.2017.02.032
|
30 |
Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
|
31 |
Spitzig W A. Effect of hydrostatic pressure on plastic-flow properties of iron single crystals [J]. Acta Metall., 1979, 27: 523
doi: 10.1016/0001-6160(79)90004-X
|
32 |
Zhou X L, Feng Z Q, Zhu L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579: 67
doi: 10.1038/s41586-020-2036-z
|
33 |
Zhang X X, Ni D R, Xiao B L, et al. Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction [J]. Acta Mater., 2015, 87: 161
doi: 10.1016/j.actamat.2015.01.006
|
34 |
Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
|
35 |
Fang X T, He G Z, Zheng C, et al. Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass [J]. Acta Mater., 2020, 186: 644
doi: 10.1016/j.actamat.2020.01.037
|
36 |
Zhou H, Huang C X, Sha X C, et al. In-situ observation of dislocation dynamics near heterostructured interfaces [J]. Mater. Res. Lett., 2019, 7: 376
doi: 10.1080/21663831.2019.1616330
|
37 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
|
38 |
Wu X L, Zhu Y T, Lu K. Ductility and strain hardening in gradient and lamellar structured materials [J]. Scr. Mater., 2020, 186: 321
doi: 10.1016/j.scriptamat.2020.05.025
|
39 |
Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
|
40 |
Li D Y, Fan G H, Huang X X, et al. Enhanced strength in pure Ti via design of alternating coarse- and fine-grain layers [J]. Acta Mater., 2021, 206: 116627
doi: 10.1016/j.actamat.2021.116627
|
41 |
Mánik T, Holmedal B. Review of the Taylor ambiguity and the relationship between rate-independent and rate-dependent full-constraints Taylor models [J]. Int. J. Plast., 2014, 55: 152
doi: 10.1016/j.ijplas.2013.10.002
|
42 |
Chen Y, Li N, Hoagland R G, et al. Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers [J]. Acta Mater., 2020, 199: 593
doi: 10.1016/j.actamat.2020.08.019
|
43 |
Zheng S J, Wang J, Carpenter J S, et al. Plastic instability mechanisms in bimetallic nanolayered composites [J]. Acta Mater., 2014, 79: 282
doi: 10.1016/j.actamat.2014.07.017
|
44 |
Jiang S, Peng R L, Hegedűs Z, et al. Micromechanical behavior of multilayered Ti/Nb composites processed by accumulative roll bonding: An in-situ synchrotron X-ray diffraction investigation [J]. Acta Mater., 2021, 205: 116546
doi: 10.1016/j.actamat.2020.116546
|
45 |
Yu T B, Du Y, Fan G H, et al. In-situ synchrotron X-ray micro-diffraction investigation of ultra-low-strain deformation microstructure in laminated Ti-Al composites [J]. Acta Mater., 2021, 202: 149
doi: 10.1016/j.actamat.2020.10.050
|
46 |
Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111
|
47 |
Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Mater. Res. Lett., 2014, 2: 185
doi: 10.1080/21663831.2014.935821
|
48 |
Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
|
49 |
Cornelius T W, Thomas O. Progress of in situ synchrotron X-ray diffraction studies on the mechanical behavior of materials at small scales [J]. Prog. Mater. Sci., 2018, 94: 384
doi: 10.1016/j.pmatsci.2018.01.004
|
50 |
Miao K S, Huang M, Xia Y P, et al. Unexpected de-twinning of strongly-textured Ti mediated by local stress [J]. J. Mater. Sci. Technol., 2022, 125: 231
doi: 10.1016/j.jmst.2022.02.039
|
51 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
|
52 |
Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
|
53 |
Huang M, Fan G H, Geng L, et al. Revealing extraordinary tensile plasticity in layered Ti-Al metal composite [J]. Sci. Rep., 2016, 6: 38461
doi: 10.1038/srep38461
pmid: 27917923
|
54 |
Miao K S, Li D Y, Tang G Z, et al. High elongation achieved by band-like distribution of reinforcements in aluminum matrix composites [J]. Mater. Charact., 2018, 144: 42
doi: 10.1016/j.matchar.2018.06.031
|
55 |
Xu C, Fan G H, Nakata T, et al. Deformation behavior of ultra-strong and ductile Mg-Gd-Y-Zn-Zr alloy with bimodal microstructure [J]. Metall. Mater. Trans., 2018, 49A: 1931
|
56 |
Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
|
57 |
Wu H, Huang M, Li Q G, et al. Manipulating the plastic strain delocalization through ultra-thinned hierarchical design for strength-ductility synergy [J]. Scr. Mater., 2019, 172: 165
doi: 10.1016/j.scriptamat.2019.07.034
|
58 |
Yuan F P, Yan D S, Sun J D, et al. Ductility by shear band delocalization in the nano-layer of gradient structure [J]. Mater. Res. Lett., 2019, 7: 12
doi: 10.1080/21663831.2018.1546238
|
59 |
Wang Y F, Wei Y G, Zhao Z F, et al. Activating dispersed strain bands in tensioned nanostructure layer for high ductility: The effects of microstructure inhomogeneity [J]. Int. J. Plast., 2022, 149: 103159
doi: 10.1016/j.ijplas.2021.103159
|
60 |
Wang Y F, Huang C X, He Q, et al. Heterostructure induced dispersive shear bands in heterostructured Cu [J]. Scr. Mater., 2019, 170: 76
doi: 10.1016/j.scriptamat.2019.05.036
|
61 |
Wang Y F, Wei Y G, Zhao Z F, et al. Mechanical response of the constrained nanostructured layer in heterogeneous laminate [J]. Scr. Mater., 2022, 207: 114310
doi: 10.1016/j.scriptamat.2021.114310
|
62 |
Wang Y F, Huang C X, Li Z K, et al. Shear band stability and uniform elongation of gradient structured material: Role of lateral constraint [J]. Extreme Mech. Lett., 2020, 37: 100686
doi: 10.1016/j.eml.2020.100686
|
63 |
Wang Y F, Huang C X, Li Y S, et al. Dense dispersed shear bands in gradient-structured Ni [J]. Int. J. Plast., 2020, 124: 186
doi: 10.1016/j.ijplas.2019.08.012
|
64 |
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115
pmid: 22020005
|
65 |
Riesch J, Buffiere J Y, Höschen T, et al. In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system [J]. Acta Mater., 2013, 61: 7060
doi: 10.1016/j.actamat.2013.07.035
|
66 |
Faber K T, Evans A G. Intergranular crack-deflection toughening in silicon carbide [J]. J. Am. Ceram. Soc., 1983, 66: C-94
|
67 |
Meyers M A, Lin A Y M, Chen P Y, et al. Mechanical strength of abalone nacre: Role of the soft organic layer [J]. J. Mech. Behav. Biomed. Mater., 2008, 1: 76
doi: 10.1016/j.jmbbm.2007.03.001
pmid: 19627773
|
68 |
Zhang M Y, Zhao N, Yu Q, et al. On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures [J]. Nat. Commun., 2022, 13: 3247
doi: 10.1038/s41467-022-30873-9
pmid: 35668100
|
69 |
Lawn B R, Lee J J W, Chai H. Teeth: Among nature's most durable biocomposites [J]. Annu. Rev. Mater. Res., 2010, 40: 55
doi: 10.1146/annurev-matsci-070909-104537
|
70 |
Koester K J, Ager III J W, Ritchie R O. The true toughness of human cortical bone measured with realistically short cracks [J]. Nat. Mater., 2008, 7: 672
doi: 10.1038/nmat2221
pmid: 18587403
|
71 |
Stevens M M, George J H. Exploring and engineering the cell surface interface [J]. Science, 2005, 310: 1135
pmid: 16293749
|
72 |
Abid N, Mirkhalaf M, Barthelat F. Discrete-element modeling of nacre-like materials: Effects of random microstructures on strain localization and mechanical performance [J]. J. Mech. Phys. Solids, 2018, 112: 385
doi: 10.1016/j.jmps.2017.11.003
|
73 |
Koyama M, Zhang Z, Wang M M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels [J]. Science, 2017, 355: 1055
doi: 10.1126/science.aal2766
pmid: 28280201
|
74 |
Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413
pmid: 32381592
|
75 |
Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
doi: 10.1016/j.mattod.2020.09.029
|
76 |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986
pmid: 34413235
|
77 |
Buehler M J, Gao H J. Dynamical fracture instabilities due to local hyperelasticity at crack tips [J]. Nature, 2006, 439: 307
doi: 10.1038/nature04408
|
78 |
Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
doi: 10.1016/j.ijplas.2016.11.005
|
79 |
Berbenni S, Favier V, Berveiller M. Micro-macro modelling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials [J]. Comput. Mater. Sci., 2007, 39: 96
doi: 10.1016/j.commatsci.2006.02.019
|
80 |
Liang F, Wang Z X, Luo Y W, et al. Enhancing co-deformation ability of nanograined Ni-W layers in the Ni/Ni-W laminated composites [J]. Acta Mater., 2021, 216: 117138
doi: 10.1016/j.actamat.2021.117138
|
81 |
Cao R Q, Yu Q, Pan J, et al. On the exceptional damage-tolerance of gradient metallic materials [J]. Mater. Today, 2020, 32: 94
doi: 10.1016/j.mattod.2019.09.023
|
82 |
Shiota H, Tokaji K, Ohta Y. Influence of lamellar orientation on fatigue crack propagation behavior in titanium aluminide TiAl [J]. Mater. Sci. Eng., 1998, A243: 169
|
83 |
Liu W H, Zhang L W, Liew K M. Modeling of crack bridging and failure in heterogeneous composite materials: A damage-plastic multiphase model [J]. J. Mech. Phys. Solids, 2020, 143: 104072
doi: 10.1016/j.jmps.2020.104072
|
84 |
Ovid'ko I A, Sheinerman A G. Plastic deformation and fracture processes in metallic and ceramic nanomaterials with bimodal structures [J]. Rev. Adv. Mater. Sci., 2007, 16: 1
|
85 |
Xia S H, Wang J T. A micromechanical model of toughening behavior in the dual-phase composite [J]. Int. J. Plast., 2010, 26: 1442
doi: 10.1016/j.ijplas.2010.01.005
|
86 |
Liu H, Zhang H W. A uniform multiscale method for 3D static and dynamic analyses of heterogeneous materials [J]. Comput. Mater. Sci., 2013, 79: 159
doi: 10.1016/j.commatsci.2013.06.006
|
87 |
Lyu H, Ruimi A, Field D P, et al. Plasticity in materials with heterogeneous microstructures [J]. Metall. Mater. Trans., 2016, 47A: 6608
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|