Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1427-1440    DOI: 10.11900/0412.1961.2022.00317
  综述 本期目录 | 过刊浏览 |
从局域应力/应变视角理解异构金属材料的强韧化行为
范国华1, 缪克松1(), 李丹阳2, 夏夷平3, 吴昊1
1.南京工业大学 先进轻质高性能材料研究中心 南京 211816
2.哈尔滨工业大学 空间环境与物质科学研究院 哈尔滨 150001
3.哈尔滨工业大学 材料科学与工程学院 哈尔滨 150001
Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain
FAN Guohua1, MIAO Kesong1(), LI Danyang2, XIA Yiping3, WU Hao1
1.Key Laboratory for Light-weight Materials, ‎Nanjing Tech University, Nanjing 211816, China
2.Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China
3.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
Guohua FAN, Kesong MIAO, Danyang LI, Yiping XIA, Hao WU. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. Acta Metall Sin, 2022, 58(11): 1427-1440.

全文: PDF(3895 KB)   HTML
摘要: 

同步提升强度与塑性是金属材料研究的不懈追求之一。近年来,异构设计通过调控力学性质存在显著差异的组元相的空间分布,突破了金属材料强度与塑性难兼得的瓶颈。异构变形诱导强化、应变分配、延迟颈缩、界面影响区等主流理论为异构金属材料设计提供了有力指导,上述理论均指出,在受载过程中,异构金属材料组元相的局域应力与局域应变存在独特特征,并伴随偏离经典理论预测的变形和断裂行为。本文综述了异构金属材料在早期变形阶段、塑性变形阶段和断裂阶段中局域应力和局域应变演化,归纳了异构金属材料中变形行为、断裂行为与局域应力、局域应变的交互关系及对力学性能的影响,为高性能异构金属材料的设计和研发提供新的思路。

关键词 异构设计局域应力局域应变变形行为断裂行为    
Abstract

The concurrent enhancement of strength and ductility is an unremitting pursuit in metallic material research. Recently, by deliberately controlling the spatial distribution of domains with substantially different mechanical properties, heterostructured architecture has overcome the limitation of strength-ductility synergy in metallic materials. Mainstream theories, such as hetero-deformation-induced hardening, strain partition, premature local necking delay, and interface affected zone, have provided crucial guidance for the designing of preferable heterostructured metallic materials. These theories suggest that the domains of heterostructured metallic materials present unique local stress and strain characteristics upon loading, accompanying deformation and fracture behaviors that deviate from the predictions of classical theories. In this study, the evolutions of local stress and strain during the early deformation, plastic deformation, and fracture stages of heterostructured metallic materials were reviewed. Moreover, interactions between deformation or fracture behaviors and local stress or strain as well as their effects on mechanical properties are summarized, presenting a new perspective for designing and developing high-performance heterostructured metallic materials.

Key wordsheterostructured architecture    local stress    local strain    deformation behavior    fracture behavior
收稿日期: 2022-06-27     
ZTFLH:  TB31  
基金资助:国家重点研发计划项目(2020YFA0405900);国家自然科学基金项目(51927801);国家自然科学基金项目(52171117);江苏省自然科学基金项目(BK20202010);江苏省高等学校基础科学研究项目(22KJB430027)
作者简介: 范国华,男,1981年生,教授,博士
图1  几种典型的异构设计策略及其强韧化效果[15,16,19]
图2  异构金属材料的多个变形阶段[9,24]
图3  异构金属材料的强化机制[9]
图4  粗/细晶层状异构纯Ti板的晶格应变演化[40]
图5  具有3D界面的Cu/Nb层状异构材料的组织表征与力学性能[42,43]
图6  利用同步辐射X射线白光Laue微衍射技术分析Al/Al层状异构材料中的变形机制[15]
图7  梯度异构实现剪切带的非局域化[58,59]
图8  自然界中异构案例及应用[68,71,73,74]
图9  TiBw/Ti-Ti(Al)层状异构材料的断裂行为研究[14]
1 Lu K. The future of metals [J]. Science, 2010, 328: 319
doi: 10.1126/science.1185866 pmid: 20395503
2 Fu Z Q, MacDonald B E, Zhang D L, et al. Fcc nanostructured TiFeCoNi alloy with multi-scale grains and enhanced plasticity [J]. Scr. Mater., 2018, 143: 108
doi: 10.1016/j.scriptamat.2017.09.023
3 Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
4 Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544 pmid: 23353630
5 Gao H J, Ji B H, Jäger I L, et al. Materials become insensitive to flaws at nanoscale: Lessons from nature [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 5597
doi: 10.1073/pnas.0631609100
6 Suresh S. Graded materials for resistance to contact deformation and damage [J]. Science, 2001, 292: 2447
pmid: 11431558
7 Wu X L, Zhu Y T. Gradient and lamellar heterostructures for superior mechanical properties [J]. MRS Bull., 2021, 46: 244
8 Zhu Y T. Introduction to heterostructured materials: A fast emerging field [J]. Metall. Mater. Trans., 2021, 52A: 4715
9 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
10 Wang G, Ouyang H, Su Y S, et al. Heterostructured bulk aluminum with controllable gradient structure: Fabrication strategy and deformation mechanisms [J]. Scr. Mater., 2021, 196: 113762
doi: 10.1016/j.scriptamat.2021.113762
11 Yuan S Q, Gan B, Qian L, et al. Gradient nanotwinned CrCoNi medium-entropy alloy with strength-ductility synergy [J]. Scr. Mater., 2021, 203: 114117
doi: 10.1016/j.scriptamat.2021.114117
12 Cheng Z, Bu L F, Zhang Y, et al. Unraveling the origin of extra strengthening in gradient nanotwinned metals [J]. Proc. Natl. Acad. Sci. USA, 2022, 119: e2116808119
doi: 10.1073/pnas.2116808119
13 Dong S J, Chen T J, Huang S X, et al. Thickness-dependent shear localization in Cu/Nb metallic nanolayered composites [J]. Scr. Mater., 2020, 187: 323
doi: 10.1016/j.scriptamat.2020.06.049
14 Wu H, Huang M, Li X W, et al. Temperature-dependent reversed fracture behavior of multilayered TiBw/Ti-Ti(Al) composites [J]. Int. J. Plast., 2021, 141: 102998
doi: 10.1016/j.ijplas.2021.102998
15 Xia Y P, Miao K S, Wu H, et al. Superior strength-ductility synergy of layered aluminum under uniaxial tensile loading: The roles of local stress state and local strain state [J]. Int. J. Plast., 2022, 152: 103240
doi: 10.1016/j.ijplas.2022.103240
16 Vajpai S K, Ota M, Zhang Z, et al. Three-dimensionally gradient harmonic structure design: An integrated approach for high performance structural materials [J]. Mater. Res. Lett., 2016, 4: 191
doi: 10.1080/21663831.2016.1218965
17 Park H K, Ameyama K, Yoo J, et al. Additional hardening in harmonic structured materials by strain partitioning and back stress [J]. Mater. Res. Lett., 2018, 6: 261
doi: 10.1080/21663831.2018.1439115
18 Peng H X, Fan Z, Evans J R G. Bi-continuous metal matrix composites [J]. Mater. Sci. Eng., 2001, A303: 37
19 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940 pmid: 25237091
20 Yang M X, Li R G, Jiang P, et al. Residual stress provides significant strengthening and ductility in gradient structured materials [J]. Mater. Res. Lett., 2019, 7: 433
doi: 10.1080/21663831.2019.1635537
21 Long J Z, Pan Q S, Tao N R, et al. Residual stress induced tension-compression asymmetry of gradient nanograined copper [J]. Mater. Res. Lett., 2018, 6: 456
doi: 10.1080/21663831.2018.1478898
22 Antolovich S D, Armstrong R W. Plastic strain localization in metals: Origins and consequences [J]. Prog. Mater. Sci., 2014, 59: 1
doi: 10.1016/j.pmatsci.2013.06.001
23 Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
doi: 10.1016/j.pmatsci.2020.100675
24 Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
25 Wang Y F, Huang C X, Fang X T, et al. Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient [J]. Scr. Mater., 2020, 174: 19
doi: 10.1016/j.scriptamat.2019.08.022
26 Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
27 Frint P, Wagner M F X. Strain partitioning by recurrent shear localization during equal-channel angular pressing of an AA6060 aluminum alloy [J]. Acta Mater., 2019, 176: 306
doi: 10.1016/j.actamat.2019.07.009
28 Liu H S, Zhang B, Zhang G P. Delaying premature local necking of high-strength Cu: A potential way to enhance plasticity [J]. Scr. Mater., 2011, 64: 13
doi: 10.1016/j.scriptamat.2010.08.049
29 Liang F, Tan H F, Zhang B, et al. Maximizing necking-delayed fracture of sandwich-structured Ni/Cu/Ni composites [J]. Scr. Mater., 2017, 134: 28
doi: 10.1016/j.scriptamat.2017.02.032
30 Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
31 Spitzig W A. Effect of hydrostatic pressure on plastic-flow properties of iron single crystals [J]. Acta Metall., 1979, 27: 523
doi: 10.1016/0001-6160(79)90004-X
32 Zhou X L, Feng Z Q, Zhu L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579: 67
doi: 10.1038/s41586-020-2036-z
33 Zhang X X, Ni D R, Xiao B L, et al. Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction [J]. Acta Mater., 2015, 87: 161
doi: 10.1016/j.actamat.2015.01.006
34 Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
35 Fang X T, He G Z, Zheng C, et al. Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass [J]. Acta Mater., 2020, 186: 644
doi: 10.1016/j.actamat.2020.01.037
36 Zhou H, Huang C X, Sha X C, et al. In-situ observation of dislocation dynamics near heterostructured interfaces [J]. Mater. Res. Lett., 2019, 7: 376
doi: 10.1080/21663831.2019.1616330
37 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
38 Wu X L, Zhu Y T, Lu K. Ductility and strain hardening in gradient and lamellar structured materials [J]. Scr. Mater., 2020, 186: 321
doi: 10.1016/j.scriptamat.2020.05.025
39 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
40 Li D Y, Fan G H, Huang X X, et al. Enhanced strength in pure Ti via design of alternating coarse- and fine-grain layers [J]. Acta Mater., 2021, 206: 116627
doi: 10.1016/j.actamat.2021.116627
41 Mánik T, Holmedal B. Review of the Taylor ambiguity and the relationship between rate-independent and rate-dependent full-constraints Taylor models [J]. Int. J. Plast., 2014, 55: 152
doi: 10.1016/j.ijplas.2013.10.002
42 Chen Y, Li N, Hoagland R G, et al. Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers [J]. Acta Mater., 2020, 199: 593
doi: 10.1016/j.actamat.2020.08.019
43 Zheng S J, Wang J, Carpenter J S, et al. Plastic instability mechanisms in bimetallic nanolayered composites [J]. Acta Mater., 2014, 79: 282
doi: 10.1016/j.actamat.2014.07.017
44 Jiang S, Peng R L, Hegedűs Z, et al. Micromechanical behavior of multilayered Ti/Nb composites processed by accumulative roll bonding: An in-situ synchrotron X-ray diffraction investigation [J]. Acta Mater., 2021, 205: 116546
doi: 10.1016/j.actamat.2020.116546
45 Yu T B, Du Y, Fan G H, et al. In-situ synchrotron X-ray micro-diffraction investigation of ultra-low-strain deformation microstructure in laminated Ti-Al composites [J]. Acta Mater., 2021, 202: 149
doi: 10.1016/j.actamat.2020.10.050
46 Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111
47 Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Mater. Res. Lett., 2014, 2: 185
doi: 10.1080/21663831.2014.935821
48 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
49 Cornelius T W, Thomas O. Progress of in situ synchrotron X-ray diffraction studies on the mechanical behavior of materials at small scales [J]. Prog. Mater. Sci., 2018, 94: 384
doi: 10.1016/j.pmatsci.2018.01.004
50 Miao K S, Huang M, Xia Y P, et al. Unexpected de-twinning of strongly-textured Ti mediated by local stress [J]. J. Mater. Sci. Technol., 2022, 125: 231
doi: 10.1016/j.jmst.2022.02.039
51 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
52 Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
53 Huang M, Fan G H, Geng L, et al. Revealing extraordinary tensile plasticity in layered Ti-Al metal composite [J]. Sci. Rep., 2016, 6: 38461
doi: 10.1038/srep38461 pmid: 27917923
54 Miao K S, Li D Y, Tang G Z, et al. High elongation achieved by band-like distribution of reinforcements in aluminum matrix composites [J]. Mater. Charact., 2018, 144: 42
doi: 10.1016/j.matchar.2018.06.031
55 Xu C, Fan G H, Nakata T, et al. Deformation behavior of ultra-strong and ductile Mg-Gd-Y-Zn-Zr alloy with bimodal microstructure [J]. Metall. Mater. Trans., 2018, 49A: 1931
56 Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
57 Wu H, Huang M, Li Q G, et al. Manipulating the plastic strain delocalization through ultra-thinned hierarchical design for strength-ductility synergy [J]. Scr. Mater., 2019, 172: 165
doi: 10.1016/j.scriptamat.2019.07.034
58 Yuan F P, Yan D S, Sun J D, et al. Ductility by shear band delocalization in the nano-layer of gradient structure [J]. Mater. Res. Lett., 2019, 7: 12
doi: 10.1080/21663831.2018.1546238
59 Wang Y F, Wei Y G, Zhao Z F, et al. Activating dispersed strain bands in tensioned nanostructure layer for high ductility: The effects of microstructure inhomogeneity [J]. Int. J. Plast., 2022, 149: 103159
doi: 10.1016/j.ijplas.2021.103159
60 Wang Y F, Huang C X, He Q, et al. Heterostructure induced dispersive shear bands in heterostructured Cu [J]. Scr. Mater., 2019, 170: 76
doi: 10.1016/j.scriptamat.2019.05.036
61 Wang Y F, Wei Y G, Zhao Z F, et al. Mechanical response of the constrained nanostructured layer in heterogeneous laminate [J]. Scr. Mater., 2022, 207: 114310
doi: 10.1016/j.scriptamat.2021.114310
62 Wang Y F, Huang C X, Li Z K, et al. Shear band stability and uniform elongation of gradient structured material: Role of lateral constraint [J]. Extreme Mech. Lett., 2020, 37: 100686
doi: 10.1016/j.eml.2020.100686
63 Wang Y F, Huang C X, Li Y S, et al. Dense dispersed shear bands in gradient-structured Ni [J]. Int. J. Plast., 2020, 124: 186
doi: 10.1016/j.ijplas.2019.08.012
64 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115 pmid: 22020005
65 Riesch J, Buffiere J Y, Höschen T, et al. In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system [J]. Acta Mater., 2013, 61: 7060
doi: 10.1016/j.actamat.2013.07.035
66 Faber K T, Evans A G. Intergranular crack-deflection toughening in silicon carbide [J]. J. Am. Ceram. Soc., 1983, 66: C-94
67 Meyers M A, Lin A Y M, Chen P Y, et al. Mechanical strength of abalone nacre: Role of the soft organic layer [J]. J. Mech. Behav. Biomed. Mater., 2008, 1: 76
doi: 10.1016/j.jmbbm.2007.03.001 pmid: 19627773
68 Zhang M Y, Zhao N, Yu Q, et al. On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures [J]. Nat. Commun., 2022, 13: 3247
doi: 10.1038/s41467-022-30873-9 pmid: 35668100
69 Lawn B R, Lee J J W, Chai H. Teeth: Among nature's most durable biocomposites [J]. Annu. Rev. Mater. Res., 2010, 40: 55
doi: 10.1146/annurev-matsci-070909-104537
70 Koester K J, Ager III J W, Ritchie R O. The true toughness of human cortical bone measured with realistically short cracks [J]. Nat. Mater., 2008, 7: 672
doi: 10.1038/nmat2221 pmid: 18587403
71 Stevens M M, George J H. Exploring and engineering the cell surface interface [J]. Science, 2005, 310: 1135
pmid: 16293749
72 Abid N, Mirkhalaf M, Barthelat F. Discrete-element modeling of nacre-like materials: Effects of random microstructures on strain localization and mechanical performance [J]. J. Mech. Phys. Solids, 2018, 112: 385
doi: 10.1016/j.jmps.2017.11.003
73 Koyama M, Zhang Z, Wang M M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels [J]. Science, 2017, 355: 1055
doi: 10.1126/science.aal2766 pmid: 28280201
74 Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
75 Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
doi: 10.1016/j.mattod.2020.09.029
76 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
77 Buehler M J, Gao H J. Dynamical fracture instabilities due to local hyperelasticity at crack tips [J]. Nature, 2006, 439: 307
doi: 10.1038/nature04408
78 Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
doi: 10.1016/j.ijplas.2016.11.005
79 Berbenni S, Favier V, Berveiller M. Micro-macro modelling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials [J]. Comput. Mater. Sci., 2007, 39: 96
doi: 10.1016/j.commatsci.2006.02.019
80 Liang F, Wang Z X, Luo Y W, et al. Enhancing co-deformation ability of nanograined Ni-W layers in the Ni/Ni-W laminated composites [J]. Acta Mater., 2021, 216: 117138
doi: 10.1016/j.actamat.2021.117138
81 Cao R Q, Yu Q, Pan J, et al. On the exceptional damage-tolerance of gradient metallic materials [J]. Mater. Today, 2020, 32: 94
doi: 10.1016/j.mattod.2019.09.023
82 Shiota H, Tokaji K, Ohta Y. Influence of lamellar orientation on fatigue crack propagation behavior in titanium aluminide TiAl [J]. Mater. Sci. Eng., 1998, A243: 169
83 Liu W H, Zhang L W, Liew K M. Modeling of crack bridging and failure in heterogeneous composite materials: A damage-plastic multiphase model [J]. J. Mech. Phys. Solids, 2020, 143: 104072
doi: 10.1016/j.jmps.2020.104072
84 Ovid'ko I A, Sheinerman A G. Plastic deformation and fracture processes in metallic and ceramic nanomaterials with bimodal structures [J]. Rev. Adv. Mater. Sci., 2007, 16: 1
85 Xia S H, Wang J T. A micromechanical model of toughening behavior in the dual-phase composite [J]. Int. J. Plast., 2010, 26: 1442
doi: 10.1016/j.ijplas.2010.01.005
86 Liu H, Zhang H W. A uniform multiscale method for 3D static and dynamic analyses of heterogeneous materials [J]. Comput. Mater. Sci., 2013, 79: 159
doi: 10.1016/j.commatsci.2013.06.006
87 Lyu H, Ruimi A, Field D P, et al. Plasticity in materials with heterogeneous microstructures [J]. Metall. Mater. Trans., 2016, 47A: 6608
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[3] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[4] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[5] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[6] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[7] 吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566.
[8] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[9] 冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.
[10] 许志武,马志鹏,闫久春,张誉喾,张旭昀. Ti/Al异种合金接头原位拉伸应变场及断裂行为的研究*[J]. 金属学报, 2016, 52(11): 1403-1412.
[11] 刘永康, 黄海友, 谢建新. 连续柱状晶组织CuNi10Fe1Mn合金变形行为的各向异性[J]. 金属学报, 2015, 51(1): 40-48.
[12] 张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
[13] 董丹阳,刘杨,王磊,苏亮进. 应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49(2): 159-166.
[14] 董丹阳, 刘杨, 王磊, 杨玉玲, 李金凤, 金梦梦. 应变速率对DP780钢激光焊接接头动态变形行为的影响[J]. 金属学报, 2013, 49(12): 1493-1500.
[15] 刘东升 程丙贵 陈圆圆. 低C含Cu NV-F690特厚钢板的精细组织和强韧性[J]. 金属学报, 2012, 48(3): 334-342.