Please wait a minute...
金属学报  2022, Vol. 58 Issue (6): 781-791    DOI: 10.11900/0412.1961.2020.00537
  研究论文 本期目录 | 过刊浏览 |
热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为
沈岗1, 张文泰1, 周超2, 纪焕中3, 罗恩3, 张海军4(), 万国江1()
1.西南交通大学 材料科学与工程学院 材料先进技术教育部重点实验室 成都 610031
2.北京科技大学 材料科学与工程学院 北京材料基因工程高精尖创新中心 北京 100083
3.四川大学 华西口腔医学院 成都 610041
4.同济大学附属第十人民医院 上海 200072
Mechanical Properties and Degradation Behavior of Hot-Extruded Zn-2Cu-0.5Zr Alloy
SHEN Gang1, ZHANG Wentai1, ZHOU Chao2, JI Huanzhong3, LUO En3, ZHANG Haijun4(), WAN Guojiang1()
1.Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2.Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
3.West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
4.The Tenth People's Hospital of Shanghai, Tongji University, Shanghai 200072, China
引用本文:

沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
Gang SHEN, Wentai ZHANG, Chao ZHOU, Huanzhong JI, En LUO, Haijun ZHANG, Guojiang WAN. Mechanical Properties and Degradation Behavior of Hot-Extruded Zn-2Cu-0.5Zr Alloy[J]. Acta Metall Sin, 2022, 58(6): 781-791.

全文: PDF(5218 KB)   HTML
摘要: 

针对可降解锌基植入物面临的关键问题,制备了一种兼顾综合力学性能和降解行为的新型热挤压Zn-2Cu-0.5Zr (质量分数,%)合金。该合金的微观组织由Zn基体相、CuZn5相和Zn22Zr相构成。得益于均匀分布的第二相颗粒和基体相晶粒的进一步细化,热挤压Zn-2Cu-0.5Zr合金的综合力学性能显著优于Zn和Zn-2Cu合金,屈服强度、极限抗拉强度和断后延伸率分别提升至192 MPa、213 MPa和61%。此外,基体相晶粒的细化使得热挤压Zn-2Cu-0.5Zr合金表面生成的腐蚀产物层更加均匀致密,因而显著改善了基体的不均匀降解模式。

关键词 可降解锌基合金微观组织力学性能降解行为    
Abstract

Zinc possesses a moderate degradation rate compared to magnesium and iron. Accordingly, it has been studied as a biodegradable metal in recent years. However, its mechanical properties barely meet the clinical requirements of implant applications. Moreover, the non-uniform corrosion mode of zinc can result in the premature mechanical failure of the implants. In the present study, a hot-extruded Zn-2Cu-0.5Zr (mass fraction, %) alloy was fabricated with improved mechanical properties and degradation behavior suitable for implant use. The microstructure of the Zn-2Cu-0.5Zr alloy was composed of a Zn matrix, CuZn5 phase, and Zn22Zr phase. Owing to the evenly distributed second phase particles and refined grain size, the yield strength, ultimate tensile strength, and elongation of the hot-extruded Zn-2Cu-0.5Zr alloy were improved to 192 MPa, 213 MPa, and 61%, respectively, which were significantly higher than those of Zn and Zn-2Cu alloy. Furthermore, the refined grains also rendered a more uniform degradation mode to the Zn matrix than Zn and Zn-2Cu alloy. In conclusion, the hot-extruded Zn-2Cu-0.5Zr alloy may find promising applications in implants.

Key wordsbiodegradable Zn-based alloy    microstructure    mechanical property    degradation behavior
收稿日期: 2020-12-31     
ZTFLH:  TG146.1  
基金资助:国家重点研发计划项目(2016YFC1102500);四川省科技计划项目(2020YFH0077)
作者简介: 沈 岗,男,1995年生,硕士生
图1  热挤压Zn、Zn-2Cu和Zn-2Cu-0.5Zr合金的OM和SEM像
图2  热挤压Zn、Zn-2Cu和Zn-2Cu-0.5Zr合金的XRD谱
图3  热挤压Zn、Zn-2Cu和Zn-2Cu-0.5Zr合金的力学性能
图4  (37 ± 0.5)℃下热挤压Zn、Zn-2Cu和Zn-2Cu-0.5Zr合金在Hank's溶液中的电化学测试结果
SampleEcorr (vs SCE)icorrRsQpRpQctRct
VμA·cm-2Ω·cm210-6 S n ·Ω-1·cm-2Ω·cm210-6 S n ·Ω-1·cm-2kΩ·cm2
Zn-1.0357.2210.273.5937.770.740.56
Zn-2Cu-0.9613.1110.8119.12225.4814.150.68
Zn-2Cu-0.5Zr-0.9810.2410.658.18433.3465.431.54
表1  动电位极化(PDP)曲线和电化学阻抗谱(EIS)的拟合结果
图5  EIS拟合等效电路图
图6  (37 ± 0.5)℃下热挤压Zn在Hank's溶液中浸泡不同时间后的表面形貌
图7  (37 ± 0.5)℃下热挤压Zn-2Cu合金在Hank's溶液中浸泡不同时间后的表面形貌
图8  (37 ± 0.5)℃下热挤压Zn-2Cu-0.5Zr合金在Hank's溶液中浸泡不同时间后的表面形貌
图9  (37 ± 0.5)℃下热挤压Zn、Zn-2Cu和Zn-2Cu-0.5Zr合金在Hank's溶液中浸泡不同时间后去除腐蚀产物的表面形貌
图10  失重法测量(37 ± 0.5)℃下热挤压Zn、Zn-2Cu和Zn-2Cu-0.5Zr合金在Hank's溶液中浸泡不同时间的腐蚀速率
图11  热挤压Zn-2Cu-0.5Zr合金性能改善机制示意图
1 Zheng Y F, Gu X N, Witte F. Biodegradable metals [J]. Mater. Sci. Eng., 2014, R77: 1
2 Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25: 2577
doi: 10.1002/adma.201300226
3 Mostaed E, Sikora-Jasinska M, Drelich J W, et al. Zinc-based alloys for degradable vascular stent applications [J]. Acta Biomater., 2018, 71: 1
doi: S1742-7061(18)30125-9 pmid: 29530821
4 Bowen P K, Shearier E R, Zhao S, et al. Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn-alloys [J]. Adv. Healthc. Mater., 2016, 5: 1121
doi: 10.1002/adhm.201501019
5 Tapiero H, Tew K D. Trace elements in human physiology and pathology: Zinc and metallothioneins [J]. Biomed. Pharmacother., 2003, 57: 399
pmid: 14652165
6 Su Y C, Cockerill I, Wang Y D, et al. Zinc-based biomaterials for regeneration and therapy [J]. Trends Biotechnol., 2019, 37: 428
doi: 10.1016/j.tibtech.2018.10.009
7 Wang L N, Meng Y, Liu L J, et al. Research progress on biodegradable zinc-based biomaterials [J]. Acta Metall. Sin., 2017, 53: 1317
7 王鲁宁, 孟 瑶, 刘丽君 等. 可降解锌基生物材料的研究进展 [J]. 金属学报, 2017, 53: 1317
8 Jia B, Yang H T, Han Y, et al. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications [J]. Acta Biomater., 2020, 108: 358
doi: S1742-7061(20)30141-0 pmid: 32165194
9 O'Connor J P, Kanjilal D, Teitelbaum M, et al. Zinc as a therapeutic agent in bone regeneration [J]. Materials, 2020, 13: 2211
doi: 10.3390/ma13102211
10 Vojtěch D, Kubásek J, Šerák P, et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation [J]. Acta Biomater., 2011, 7: 3515
doi: 10.1016/j.actbio.2011.05.008 pmid: 21621017
11 Mostaed E, Sikora-Jasinska M, Mostaed A, et al. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation [J]. J. Mech. Behav. Biomed. Mater., 2016, 60: 581
doi: 10.1016/j.jmbbm.2016.03.018
12 Zheng Y F, Yang H T. Research progress in biodegradable metals for stent application [J]. Acta Metall. Sin., 2017, 53: 1227
12 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展 [J]. 金属学报, 2017, 53: 1227
doi: 10.11900/0412.1961.2017.00270
13 Chen Y Q, Zhang W T, Maitz M F, et al. Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline [J]. Corros. Sci., 2016, 111: 541
doi: 10.1016/j.corsci.2016.05.039
14 Ke G Z, Yue R, Huang H, et al. Effects of Sr addition on microstructure, mechanical properties and in vitro degradation behavior of as-extruded Zn-Sr binary alloys [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1873
doi: 10.1016/S1003-6326(20)65346-8
15 Zhang E L, Fu S, Wang R X, et al. Role of Cu element in biomedical metal alloy design [J]. Rare Met., 2019, 38: 476
doi: 10.1007/s12598-019-01245-y
16 Tang Z B, Niu J L, Huang H, et al. Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications [J]. J. Mech. Behav. Biomed. Mater., 2017, 72: 182
doi: 10.1016/j.jmbbm.2017.05.013
17 Li P, Zhang W T, Dai J T, et al. Investigation of zinc-copper alloys as potential materials for craniomaxillofacial osteosynthesis implants [J]. Mater. Sci. Eng., 2019, C103: 109826
18 Qu X H, Yang H T, Jia B, et al. Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation [J]. Acta Biomater., 2020, 117: 400
doi: 10.1016/j.actbio.2020.09.041
19 Yang H T, Jia B, Zhang Z C, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications [J]. Nat. Commun., 2020, 11: 401
doi: 10.1038/s41467-019-14153-7
20 Pratiwi R Y, Trinanda A F, Fahmi M W G, et al. The effect of zirconium addition on corrosion behavior of Zn-Zr alloys as biodegradable orthopedic implant application [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2020, 833: 012085
21 Venezuela J, Dargusch M S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review [J]. Acta Biomater., 2019, 87: 1
doi: S1742-7061(19)30055-8 pmid: 30660777
22 Li H F, Yang H T, Zheng Y F, et al. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr [J]. Mater. Des., 2015, 83: 95
doi: 10.1016/j.matdes.2015.05.089
23 Yuan W, Xia D D, Zheng Y F, et al. Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn-Li alloy: In vitro and in vivo studies [J]. Acta Biomater., 2020, 105: 290
doi: S1742-7061(20)30036-2 pmid: 31972366
24 Willbold E, Gu X N, Albert D, et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium [J]. Acta Biomater., 2015, 11: 554
doi: 10.1016/j.actbio.2014.09.041 pmid: 25278442
25 Zhang W T, Li P, Shen G, et al. Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application [J]. Bioact. Mater., 2021, 6: 975
26 Zhang X B, Yuan G Y, Mao L, et al. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy [J]. J. Mech. Behav. Biomed. Mater., 2012, 7: 77
doi: 10.1016/j.jmbbm.2011.05.026
27 Ma D, Li Y, Ng S C, et al. Unidirectional solidification of Zn-rich Zn-Cu peritectic alloys—I. Microstructure selection [J]. Acta Mater., 2000, 48: 419
doi: 10.1016/S1359-6454(99)00365-1
28 Yue R, Zhang J, Ke G Z, et al. Effects of extrusion temperature on microstructure, mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5Fe alloy [J]. Mater. Sci. Eng., 2019, C150: 110106
29 Guo P S, Zhu X L, Yang L J, et al. Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: grain refinement mechanism, corrosion behavior, and biocompatibility in vivo [J]. Mater. Sci. Eng., 2021, C118: 111391
30 Pola A, Tocci M, Goodwin F E. Review of microstructures and properties of zinc alloys [J]. Metals, 2020, 10: 253
doi: 10.3390/met10020253
31 Cui X M, Yu Z L, Liu F, et al. Influence of secondary phases on crack initiation and propagation during fracture process of as-cast Mg-Al-Zn-Nd alloy [J]. Mater. Sci. Eng., 2019, A759: 708
32 Liu X W, Sun J K, Qiu K J, et al. Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn-1.5Mg alloy [J]. J. Alloys Compd., 2016, 664: 444
doi: 10.1016/j.jallcom.2015.10.116
33 Wątroba M, Bednarczyk W, Kawałko J, et al. Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material [J]. Mater. Des., 2019, 183: 108154
doi: 10.1016/j.matdes.2019.108154
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.