|
|
汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理 |
储双杰1,2( ), 毛博1( ), 胡广魁2 |
1.上海交通大学 材料科学与工程学院 上海 200240 2.宝山钢铁股份有限公司 上海 201900 |
|
Microstructure Control and Strengthening Mechanism of High Strength Cold Rolled Dual Phase Steels for Automobile Applications |
CHU Shuangjie1,2( ), MAO Bo1( ), HU Guangkui2 |
1.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2.Baoshan Iron & Steel Co. , Ltd. , Shanghai 201900, China |
引用本文:
储双杰, 毛博, 胡广魁. 汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理[J]. 金属学报, 2022, 58(4): 551-566.
Shuangjie CHU,
Bo MAO,
Guangkui HU.
Microstructure Control and Strengthening Mechanism of High Strength Cold Rolled Dual Phase Steels for Automobile Applications[J]. Acta Metall Sin, 2022, 58(4): 551-566.
1 |
Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry [J]. Arch. Civil Mech. Eng., 2008, 8: 103
|
2 |
Peng X R. Analysis of steel market in China automobile industry [J]. Metall. Econ. Manage., 2021, (6): 26
|
2 |
彭孝仁. 我国汽车行业用钢市场分析 [J]. 冶金经济与管理, 2021, (6): 26
|
3 |
Wagoner R H, Smith G. Advanced high strength steel workshop [R]. Arlington, Virginia, USA, 2006, 1: 122
|
4 |
Funakawa Y, Nagataki Y. High strength steel sheets for weight reduction of automobiles [J]. JFE Tech. Rep., 2019, 24: 1
|
5 |
Hayami S, Furukawa T. Micro alloying 75 [A]. Proceeding of a Symposium on High Strength, Low-Alloy Steels, Products and Process [C]. New York: Union Carbide Corp., 1975: 78
|
6 |
Rana R, Singh S B. Automotive Steels: Design, Metallurgy, Processing and Applications [M]. Cambridge: Woodhead Publishing, 2016: 1
|
7 |
Zhao Z Z, Tong T T, Zhao A M, et al. Microstructure, mechanical properties and work hardening behavior of 1300 MPa grade 0.14C-2.72Mn-1.3Si steel [J]. Acta Metall Sin., 2014, 50: 1153
|
7 |
赵征志, 佟婷婷, 赵爱民 等. 1300 MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为 [J]. 金属学报, 2014, 50: 1153
|
8 |
Olsson K, Gladh M, Hedin J E, et al. Microalloyed high-strength steels [J]. Adv. Mater. Processes, 2006, 164: 44
|
9 |
Rashid M S. Dual phase steels [J]. Annu. Rev. Mater. Sci., 1981, 11: 245
|
10 |
Davies R G. Early stages of yielding and strain aging of a vanadium-containing dual-phase steel [J]. Metall. Trans., 1979, 10A: 1549
|
11 |
Tasan C C, Diehl M, Yan D, et al. An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design [J]. Annu. Rev. Mater. Res., 2015, 45: 391
|
12 |
Sarwar M, Ahmad E, Qureshi K A, et al. Influence of epitaxial ferrite on tensile properties of dual phase steel [J]. Mater. Des., 2007, 28: 335
|
13 |
Kalhor A, Taheri A K, Mirzadeh H, et al. Processing, microstructure adjustments, and mechanical properties of dual phase steels: A review [J]. Mater. Sci. Technol., 2021, 37: 561
|
14 |
Zhao N, Liu X W, Sun M J, et al. Microstructure and fatigue properties of low temperature coiling hot-rolled dual phase steel [J]. Heat Treat. Met., 2021, 46(5): 55
|
14 |
赵 楠, 刘学伟, 孙明军 等. 低温卷取热轧双相钢的显微组织及疲劳性能 [J]. 金属热处理, 2021, 46(5): 55
|
15 |
Walunj M G, Mandal G K, Ranjan R K, et al. Role of dew points and Fe pre-coats on the galvanizing and galvannealing of dual phase steel [J]. Surf. Coat. Technol., 2021, 422: 127573
|
16 |
Soto R, Saikaly W, Bano X, et al. Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties [J]. Acta Mater., 1999, 47: 3475
|
17 |
Xia M, Biro E, Tian Z, et al. Effects of heat input and martensite on HAZ softening in laser welding of dual phase steels [J]. ISIJ Int., 2008, 48: 809
|
18 |
De La Concepción V L, Lorusso H N, Svoboda H G. Effect of carbon content on microstructure and mechanical properties of dual phase steels [J]. Proced. Mater. Sci., 2015, 8: 1047
|
19 |
Mukherjee K, Hazra S S, Militzer M. Grain refinement in dual-phase steels [J]. Metall. Mater. Trans., 2009, 40A: 2145
|
20 |
Calcagnotto M, Ponge D, Raabe D. On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels [J]. Metall. Mater. Trans., 2012, 43A: 37
|
21 |
Ye J Y, Zhao Z Z, Zhang Y H, et al. Effects of Si and Cr on microstructure and mechanical properties of ultra high strength dual-phase steel [J]. Iron Steel, 2015, 50(3): 78
|
21 |
叶洁云, 赵征志, 张迎晖 等. 硅和铬对超高强双相钢组织和性能的影响 [J]. 钢铁, 2015, 50(3): 78
|
22 |
Nouri A, Saghafian H, Kheirandish S. Effects of silicon content and intercritical annealing on manganese partitioning in dual phase steels [J]. J. Iron Steel Res. Int., 2010, 17: 44
|
23 |
Terao N, Cauwe B. Influence of additional elements (Mo, Nb, Ta and B) on the mechanical properties of high-manganese dual-phase steels [J]. J. Mater. Sci., 1988, 23: 1769
|
24 |
Han Q H, Kang Y L, Zhao X M, et al. Microstructure and properties of C-Si-Mn-Cr (Mo) cold rolled DP980 steels [A]. Annual Cold Rolling Plates Technology Conference [C]. Baotou: China Metal Society, 2009: 244
|
24 |
韩启航, 康永林, 赵显蒙 等. C-Si-Mn-Cr(Mo)系 980MPa级冷轧双相钢的组织性能研究 [A]. 2009年全国冷轧板带生产技术交流会论文集 [C]. 包头: 中国金属学会, 2009: 244
|
25 |
Zhao Z Z, Niu F, Tang D, et al. Microstructure and properties of ultra-high strength cold-rolled dual phase steel [J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 1287
|
25 |
赵征志, 牛 枫, 唐 荻 等. 超高强度冷轧双相钢组织与性能 [J]. 北京科技大学学报, 2010, 32: 1287
|
26 |
Zhang X H, Zhu G H, Mao W M. Alloying design and composition control of 800MPa grade cold rolled dual phase steel [J]. Steelmaking, 2010, 26(5): 16
|
26 |
张学辉, 朱国辉, 毛卫民. 800MPa级双相钢的合金化设计及成分控制 [J]. 炼钢, 2010, 26(5): 16
|
27 |
Kamikawa N, Hirohashi M, Sato Y, et al. Tensile behavior of ferrite-martensite dual phase steels with nano-precipitation of vanadium carbides [J]. ISIJ Int., 2015, 55: 1781
|
28 |
Kang J Y, Lee H C, Han S H. Effect of Al and Mo on the textures and microstructures of dual phase steels [J]. Mater. Sci. Eng., 2011, A530: 183
|
29 |
Bezobrazov Y A, Kolbasnikov N G, Naumov A A. High strength dual-phase steel structure evolution during hot rolling [A]. Materials Science and Technology [C]. Pittsburgh, Pennsylvania: The Association for Iron & Steel Technology, 2012
|
30 |
Nikkhah S, Mirzadeh H, Zamani M. Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing [J]. Mater. Chem. Phys., 2019, 230: 1
|
31 |
Dai J G, Meng Q G, Zheng H X. High-strength dual-phase steel produced through fast-heating annealing method [J]. Results Mater., 2020, 5: 100069
|
32 |
Zamani M, Mirzadeh H, Maleki M. Enhancement of mechanical properties of low carbon dual phase steel via natural aging [J]. Mater. Sci. Eng., 2018, A734: 178
|
33 |
Xiong Z P, Kostryzhev A G, Stanford N E, et al. Microstructures and mechanical properties of dual phase steel produced by laboratory simulated strip casting [J]. Mater. Des., 2015, 88: 537
|
34 |
Waterschoot T, Kestens L, De Cooman B C. Hot rolling texture development in CMnCrSi dual-phase steels [J]. Metall. Mater. Trans., 2002, 33A: 1091
|
35 |
Mao B, Chu S J, Zhang L Y, et al. Effect of intercritical annealing temperature on microstructure, mechanical properties and fracture behavior of high strength cold rolled DP980 [J]. Hot Working Technol., 2014, 43(20): 157
|
35 |
毛 博, 储双杰, 张理扬 等. 两相区退火温度对高强冷轧DP980显微组织力学性能和断裂行为的影响 [J]. 热加工工艺, 2014, 43(20): 157
|
36 |
Mondal D K, Ray R K. Development of {111} texture during cold rolling and recrystallization of a C-Mn-V dual-phase steel [J]. Mater. Sci. Eng., 1992, A158: 147
|
37 |
Dillien S, Seefeldt M, Allain S, et al. EBSD study of the substructure development with cold deformation of dual phase steel [J]. Mater. Sci. Eng., 2010, A527: 947
|
38 |
Salehi A R, Serajzadeh S, Taheri A K. A study on the microstructural changes in hot rolling of dual-phase steels [J]. J. Mater. Sci., 2006, 41: 1917
|
39 |
Han S H, Choi S H, Choi J K, et al. Effect of hot-rolling processing on texture and r-value of annealed dual-phase steels [J]. Mater. Sci. Eng., 2010, A527: 1686
|
40 |
Zheng C W, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model [J]. Acta Mater., 2013, 61: 5504
|
41 |
Speich G R, Demarest V A, Miller R L. Formation of austenite during intercritical annealing of dual-phase steels [J]. Metall. Mater. Trans., 1981, 12A: 1419
|
42 |
Chowdhury S G, Pereloma E V, Santos D. Evolution of texture at the initial stages of continuous annealing of cold rolled dual-phase steel: Effect of heating rate [J]. Mater. Sci. Eng., 2008, A480: 540
|
43 |
Toji Y, Yamashita T, Nakajima K, et al. Effect of Mn partitioning during intercritical annealing on following γ→α transformation and resultant mechanical properties of cold-rolled dual phase steels [J]. ISIJ Int., 2011, 51: 818
|
44 |
Jamei F, Mirzadeh H, Zamani M. Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel [J]. Mater. Sci. Eng., 2019, A750: 125
|
45 |
Sun S J, Pugh M. Manganese partitioning in dual-phase steel during annealing [J]. Mater. Sci. Eng., 2000, A276: 167
|
46 |
Nouroozi M, Mirzadeh H, Zamani M. Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel [J]. Mater. Sci. Eng., 2018, A736: 22
|
47 |
Calcagnotto M, Ponge D, Raabe D. Microstructure control during fabrication of ultrafine grained dual-phase steel: Characterization and effect of intercritical annealing parameters [J]. ISIJ Int., 2012, 52: 874
|
48 |
Bellavoine M, Dumont M, Dehmas M, et al. Ferrite recrystallization and austenite formation during annealing of cold-rolled advanced high-strength steels: In situ synchrotron X-ray diffraction and modeling [J]. Mater. Charact., 2019, 154: 20
|
49 |
Peranio N, Roters F, Raabe D. Microstructure evolution during recrystallization in dual-phase steels [J]. Mater. Sci. Forum, 2012, 715-716: 13
|
50 |
Chbihi A, Barbier D, Germain L, et al. Interactions between ferrite recrystallization and austenite formation in high-strength steels [J]. J. Mater. Sci., 2014, 49: 3608
|
51 |
Bos C, Mecozzi M G, Sietsma J. A microstructure model for recrystallisation and phase transformation during the dual-phase steel annealing cycle [J]. Computat. Mater. Sci., 2010, 48: 692
|
52 |
Ollat M, Militzer M, Massardier V, et al. Mixed-mode model for ferrite-to-austenite phase transformation in dual-phase steel [J]. Computat. Mater. Sci., 2018, 149: 282
|
53 |
Ashrafi H, Shamanian M, Emadi R, et al. A novel and simple technique for development of dual phase steels with excellent ductility [J]. Mater. Sci. Eng., 2017, A680: 197
|
54 |
Hüseyin A, Havva K Z, Ceylan K. Effect of intercritical annealing parameters on dual phase behavior of commercial low-alloyed steels [J]. J. Iron Steel Res. Int., 2010, 17: 73
|
55 |
Asadi M, De Cooman B C, Palkowski H. Influence of martensite volume fraction and cooling rate on the properties of thermomechanically processed dual phase steel [J]. Mater. Sci. Eng., 2012, A538: 42
|
56 |
Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J]. Acta Mater., 2011, 59: 658
|
57 |
Samuel F H. Effect of dual-phase treatment and tempering on the microstructure and mechanical properties of a high strength, low alloy steel [J]. Mater. Sci. Eng., 1985, 75: 51
|
58 |
Zhao Z Z, Xu G, Jin G C, et al. Development of high strength cold rolling C-Mn-Si dual phase steels [J]. Heat Treat. Metals, 2009, 34(1): 14
|
58 |
赵征志, 徐 刚, 金光灿 等. 高强度C-Mn-Si系冷轧双相钢的研究与开发 [J]. 金属热处理, 2009, 34(1): 14
|
59 |
Banerjee D, Iadicola M, Creuziger A, et al. Finite element modeling of deformation behavior of steel specimens under various loading scenarios [J]. Key Eng. Mater., 2015, 651-653: 969
|
60 |
Li H, Gao S, Tian Y, et al. Influence of tempering on mechanical properties of ferrite and martensite dual phase steel [J]. Mater. Today Proceed., 2015, 2(): S667
|
61 |
Mazinani M, Poole W J. Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel [J]. Metall. Mater. Trans., 2007, 38A: 328
|
62 |
Huang T T, Gou R B, Dan W J, et al. Strain-hardening behaviors of dual phase steels with microstructure features [J]. Mater. Sci. Eng., 2016, A672: 88
|
63 |
Ramazani A, Pinard P T, Richter S, et al. Characterisation of microstructure and modelling of flow behaviour of bainite-aided dual-phase steel [J]. Computat. Mater. Sci., 2013, 80: 134
|
64 |
Morsdorf L, Jeannin O, Barbier D, et al. Multiple mechanisms of lath martensite plasticity [J]. Acta Mater., 2016, 121: 202
|
65 |
Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J. Micromechanics stress-strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding [J]. Mater. Des., 2015, 68: 167
|
66 |
Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel [J]. Mater. Sci. Eng., 2014, A604: 135
|
67 |
Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel [J]. Acta Metall. Sin., 2013, 49: 159
|
67 |
董丹阳, 刘 杨, 王 磊 等. 应变速率对DP780钢动态拉伸变形行为的影响 [J]. 金属学报, 2013, 49: 159
|
68 |
Avramovic-Cingara G, Ososkov Y, Jain M K, et al. Effect of martensite distribution on damage behaviour in DP600 dual phase steels [J]. Mater. Sci. Eng., 2009, A516: 7
|
69 |
Kocatepe K, Cerah M, Erdogan M. Effect of martensite volume fraction and its morphology on the tensile properties of ferritic ductile iron with dual matrix structures [J]. J. Mater. Process. Technol., 2006, 178: 44
|
70 |
Lai Q Q, Brassart L, Bouaziz O, et al. Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling [J]. Int. J. Plast., 2016, 80: 187
|
71 |
Han Q H, Kang Y L, Hodgson P D, et al. Quantitative measurement of strain partitioning and slip systems in a dual-phase steel [J]. Scr. Mater., 2013, 69: 13
|
72 |
Deng J, Ma J W, Xu Y Y, et al. Effect of martensite distribution on microscopic deformation behavior and mechanical properties of dual phase steels [J]. Acta Metall. Sin., 2015, 51: 1092
|
72 |
邓 洁, 马佳伟, 许以阳 等. 马氏体的分布对双相钢微观变形行为和力学性能的影响 [J]. 金属学报, 2015, 51: 1092
|
73 |
Ghassemi-Armaki H, Maaß R, Bhat S P, et al. Deformation response of ferrite and martensite in a dual-phase steel [J]. Acta Mater., 2014, 62: 197
|
74 |
Badkoobeh F, Mostaan H, Rafiei M, et al. Microstructural characteristics and strengthening mechanisms of ferritic-martensitic dual-phase steels: A review [J]. Metals, 2022, 12: 101
|
75 |
Gao B, Hu R, Pan Z Y, et al. Strengthening and ductilization of laminate dual-phase steels with high martensite content [J]. J. Mater. Sci. Technol., 2021, 65: 29
|
76 |
Bouquerel J, Verbeken K, De Cooman B. Microstructure-based model for the static mechanical behaviour of multiphase steels [J]. Acta Mater., 2006, 54: 1443
|
77 |
Mecking H, Kocks U F. Kinetics of flow and strain-hardening [J]. Acta Metall., 1981, 29: 1865
|
78 |
Bag A, Ray K K, Dwarakadasa E S. Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels [J]. Metall. Mater. Trans., 1999, 30A: 1193
|
79 |
Paul S K, Kumar A. Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels [J]. Computat. Mater. Sci., 2012, 63: 66
|
80 |
Tasan C C, Hoefnagels J P M, Diehl M, et al. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations [J]. Int. J. Plast., 2014, 63: 198
|
81 |
Paul S K. Real microstructure based micromechanical model to simulate microstructural level deformation behavior and failure initiation in DP 590 steel [J]. Mater. Des., 2013, 44: 397
|
82 |
Sun C T, Vaidya R S. Prediction of composite properties from a representative volume element [J]. Compos. Sci. Technol., 1996, 56: 171
|
83 |
Mao B, Liao Y L. Modeling of lüders elongation and work hardening behaviors of ferrite-pearlite dual phase steels under tension [J]. Mech. Mater., 2019, 129: 222
|
84 |
Ghadbeigi H, Pinna C, Celotto S. Failure mechanisms in DP600 steel: Initiation, evolution and fracture [J]. Mater. Sci. Eng., 2013, A588: 420
|
85 |
Steinbrunner D L, Matlock D K, Krauss G. Void formation during tensile testing of dual phase steels [J]. Metall. Trans., 1988, 19A: 579
|
86 |
Das A, Tarafder S, Sivaprasad S, et al. Influence of microstructure and strain rate on the strain partitioning behaviour of dual phase steels [J]. Mater. Sci. Eng., 2019, A754: 348
|
87 |
Toda H, Takijiri A, Azuma M, et al. Damage micromechanisms in dual-phase steel investigated with combined phase-and absorption-contrast tomography [J]. Acta Mater., 2017, 126: 401
|
88 |
Gerbig D, Srivastava A, Osovski S, et al. Analysis and design of dual-phase steel microstructure for enhanced ductile fracture resistance [J]. Int. J. Fract., 2018, 209: 3
|
89 |
Aghaei M, Ziaei-Rad S. A micro mechanical study on DP600 steel under tensile loading using Lemaitre damage model coupled with combined hardening [J]. Mater. Sci. Eng., 2020, A772: 138774
|
90 |
Darabi A C, Kadkhodapour J, Anaraki A P, et al. Micromechanical modeling of damage mechanisms in dual-phase steel under different stress states [J]. Eng. Fract. Mech., 2021, 243: 107520
|
91 |
Briffod F, Shiraiwa T, Enoki M. Micromechanical investigation of the effect of the crystal orientation on the local deformation path and ductile void nucleation in dual-phase steels [J]. Mater. Sci. Eng., 2021, A826: 141933
|
92 |
Tang A, Liu H T, Chen R, et al. Mesoscopic origin of damage nucleation in dual-phase steels [J]. Int. J. Plast., 2021, 137: 102920
|
93 |
Nawaz B, Long X Y, Li Y G, et al. Effect of ferrite/martensite on microstructure evolution and mechanical properties of ultrafine vanadium dual-phase steel [J]. J. Mater. Eng. Perform., 2022, doi: 10.1007/s11665-021-06550-1
|
94 |
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
|
95 |
Yin F, Cheng G J, Xu R, et al. Ultrastrong nanocrystalline stainless steel and its Hall-Petch relationship in the nanoscale [J]. Scr. Mater., 2018, 155: 26
|
96 |
Samantaray D, Chaudhuri A, Borah U, et al. Role of grain boundary ferrite layer in dynamic recrystallization of semi-solid processed type 304L austenitic stainless steel [J]. Mater. Lett., 2016, 179: 65
|
97 |
Azizi H, Samei J, Zurob H S, et al. A novel approach to producing architectured ultra-high strength dual phase steels [J]. Mater. Sci. Eng., 2019, A833: 142582
|
98 |
Wang Y J, Sun J J, Jiang T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility [J]. Acta Mater., 2018, 158: 247
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|