Please wait a minute...
金属学报  2022, Vol. 58 Issue (4): 551-566    DOI: 10.11900/0412.1961.2022.00061
  综述 本期目录 | 过刊浏览 |
汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理
储双杰1,2(), 毛博1(), 胡广魁2
1.上海交通大学 材料科学与工程学院 上海 200240
2.宝山钢铁股份有限公司 上海 201900
Microstructure Control and Strengthening Mechanism of High Strength Cold Rolled Dual Phase Steels for Automobile Applications
CHU Shuangjie1,2(), MAO Bo1(), HU Guangkui2
1.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.Baoshan Iron & Steel Co. , Ltd. , Shanghai 201900, China
引用本文:

储双杰, 毛博, 胡广魁. 汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理[J]. 金属学报, 2022, 58(4): 551-566.
Shuangjie CHU, Bo MAO, Guangkui HU. Microstructure Control and Strengthening Mechanism of High Strength Cold Rolled Dual Phase Steels for Automobile Applications[J]. Acta Metall Sin, 2022, 58(4): 551-566.

全文: PDF(4642 KB)   HTML
摘要: 

汽车用先进高强钢支撑了现代汽车工业的飞速发展。其中双相钢以优异的力学综合性能、良好的焊接和涂装性能及较低的成本,被广泛应用于汽车结构件和车身材料中,实现有效的结构减重并提升汽车的安全性能。合金成分和组织的优化设计是获得高性能双相钢的主要手段,而明确双相钢的组织特性影响因素以及与力学性能之间的关系则是指导双相钢的合金成分和组织优化设计的必然要求。本文围绕汽车用先进高强度冷轧双相钢的显微组织和力学性能研究的最新进展,首先概述了双相钢合金成分设计的准则以及利用合金元素对显微组织进行调控的方法。然后总结了双相钢在热加工过程中的显微组织演变的规律,探讨了轧制、两相区退火、冷却过程以及过时效过程对双相钢显微组织的影响。分析了双相钢力学性能和典型的失效形式,以及与显微组织之间的关系。最后简述了目前汽车用双相钢研究还存在的科学问题和挑战,并展望了未来的研究方向和发展趋势。

关键词 汽车用钢双相钢显微组织力学性能    
Abstract

Steels have been critical in the rapid development of the global automobile industry. Among all automotive steels, dual phase (DP) steels have been extensively used as the mechanical components and outer plates in automobiles, owing to their excellent mechanical properties, desirable weldability and paintability, and low manufacturing cost. DP steels are beneficial in reducing the weight and increasing the safety of automobiles. The optimization of alloy elements and microstructure are essential for the engineering performance of DP steels. Understanding the relationship between their mechanical properties and microstructural features as well as the factors affecting the microstructure is of utmost importance. This study reviews the recent advances in the research on the microstructure evolution and mechanical properties of high strength cold-rolled DP steels for automobile applications. First, the alloy design principles and microstructure tailoring mechanism are summarized. Then, the microstructure evolution during thermal-mechanical processing, which includes rolling, intercritical annealing, subsequent cooling, and over-aging process is discussed. Thereafter, the mechanical properties and failure mechanism of DP steels as well as their relationship with the microstructural features are analyzed. Furthermore, the related challenges and future research directions are discussed and proposed, respectively.

Key wordsautomotive steel    dual phase steel    microstructure    mechanical property
收稿日期: 2022-02-17     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(52101046)
作者简介: 储双杰,男,1964年生,教授级高级工程师,博士
图1  双相钢典型的设计思路和显微组织
图2  添加Al和Mo的双相钢和普通双相钢组织对比[28]
图3  双相钢在热加工过程中的显微组织演变过程[33~35]
图4  热轧温度参数对双相钢显微组织和织构的影响[34]
图5  两相区退火工艺参数对双相钢的显微组织演变的影响[47](a) intercritical annealing temperature (b) intercritical annealing time (c) heating time
图6  两相区退火之后的冷却速率对双相钢组织的影响[47]
图7  过时效过程中双相钢的显微组织演变[60]
图8  马氏体含量对双相钢力学性能的影响[70]
图9  利用纳米压痕仪研究双相钢的力学反应[73]
图10  双相钢的裂纹产生和失效机理[87]
图11  3种不同马氏体含量的双相钢对应的断裂机理[92]
1 Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry [J]. Arch. Civil Mech. Eng., 2008, 8: 103
2 Peng X R. Analysis of steel market in China automobile industry [J]. Metall. Econ. Manage., 2021, (6): 26
2 彭孝仁. 我国汽车行业用钢市场分析 [J]. 冶金经济与管理, 2021, (6): 26
3 Wagoner R H, Smith G. Advanced high strength steel workshop [R]. Arlington, Virginia, USA, 2006, 1: 122
4 Funakawa Y, Nagataki Y. High strength steel sheets for weight reduction of automobiles [J]. JFE Tech. Rep., 2019, 24: 1
5 Hayami S, Furukawa T. Micro alloying 75 [A]. Proceeding of a Symposium on High Strength, Low-Alloy Steels, Products and Process [C]. New York: Union Carbide Corp., 1975: 78
6 Rana R, Singh S B. Automotive Steels: Design, Metallurgy, Processing and Applications [M]. Cambridge: Woodhead Publishing, 2016: 1
7 Zhao Z Z, Tong T T, Zhao A M, et al. Microstructure, mechanical properties and work hardening behavior of 1300 MPa grade 0.14C-2.72Mn-1.3Si steel [J]. Acta Metall Sin., 2014, 50: 1153
7 赵征志, 佟婷婷, 赵爱民 等. 1300 MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为 [J]. 金属学报, 2014, 50: 1153
8 Olsson K, Gladh M, Hedin J E, et al. Microalloyed high-strength steels [J]. Adv. Mater. Processes, 2006, 164: 44
9 Rashid M S. Dual phase steels [J]. Annu. Rev. Mater. Sci., 1981, 11: 245
10 Davies R G. Early stages of yielding and strain aging of a vanadium-containing dual-phase steel [J]. Metall. Trans., 1979, 10A: 1549
11 Tasan C C, Diehl M, Yan D, et al. An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design [J]. Annu. Rev. Mater. Res., 2015, 45: 391
12 Sarwar M, Ahmad E, Qureshi K A, et al. Influence of epitaxial ferrite on tensile properties of dual phase steel [J]. Mater. Des., 2007, 28: 335
13 Kalhor A, Taheri A K, Mirzadeh H, et al. Processing, microstructure adjustments, and mechanical properties of dual phase steels: A review [J]. Mater. Sci. Technol., 2021, 37: 561
14 Zhao N, Liu X W, Sun M J, et al. Microstructure and fatigue properties of low temperature coiling hot-rolled dual phase steel [J]. Heat Treat. Met., 2021, 46(5): 55
14 赵 楠, 刘学伟, 孙明军 等. 低温卷取热轧双相钢的显微组织及疲劳性能 [J]. 金属热处理, 2021, 46(5): 55
15 Walunj M G, Mandal G K, Ranjan R K, et al. Role of dew points and Fe pre-coats on the galvanizing and galvannealing of dual phase steel [J]. Surf. Coat. Technol., 2021, 422: 127573
16 Soto R, Saikaly W, Bano X, et al. Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties [J]. Acta Mater., 1999, 47: 3475
17 Xia M, Biro E, Tian Z, et al. Effects of heat input and martensite on HAZ softening in laser welding of dual phase steels [J]. ISIJ Int., 2008, 48: 809
18 De La Concepción V L, Lorusso H N, Svoboda H G. Effect of carbon content on microstructure and mechanical properties of dual phase steels [J]. Proced. Mater. Sci., 2015, 8: 1047
19 Mukherjee K, Hazra S S, Militzer M. Grain refinement in dual-phase steels [J]. Metall. Mater. Trans., 2009, 40A: 2145
20 Calcagnotto M, Ponge D, Raabe D. On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels [J]. Metall. Mater. Trans., 2012, 43A: 37
21 Ye J Y, Zhao Z Z, Zhang Y H, et al. Effects of Si and Cr on microstructure and mechanical properties of ultra high strength dual-phase steel [J]. Iron Steel, 2015, 50(3): 78
21 叶洁云, 赵征志, 张迎晖 等. 硅和铬对超高强双相钢组织和性能的影响 [J]. 钢铁, 2015, 50(3): 78
22 Nouri A, Saghafian H, Kheirandish S. Effects of silicon content and intercritical annealing on manganese partitioning in dual phase steels [J]. J. Iron Steel Res. Int., 2010, 17: 44
23 Terao N, Cauwe B. Influence of additional elements (Mo, Nb, Ta and B) on the mechanical properties of high-manganese dual-phase steels [J]. J. Mater. Sci., 1988, 23: 1769
24 Han Q H, Kang Y L, Zhao X M, et al. Microstructure and properties of C-Si-Mn-Cr (Mo) cold rolled DP980 steels [A]. Annual Cold Rolling Plates Technology Conference [C]. Baotou: China Metal Society, 2009: 244
24 韩启航, 康永林, 赵显蒙 等. C-Si-Mn-Cr(Mo)系 980MPa级冷轧双相钢的组织性能研究 [A]. 2009年全国冷轧板带生产技术交流会论文集 [C]. 包头: 中国金属学会, 2009: 244
25 Zhao Z Z, Niu F, Tang D, et al. Microstructure and properties of ultra-high strength cold-rolled dual phase steel [J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 1287
25 赵征志, 牛 枫, 唐 荻 等. 超高强度冷轧双相钢组织与性能 [J]. 北京科技大学学报, 2010, 32: 1287
26 Zhang X H, Zhu G H, Mao W M. Alloying design and composition control of 800MPa grade cold rolled dual phase steel [J]. Steelmaking, 2010, 26(5): 16
26 张学辉, 朱国辉, 毛卫民. 800MPa级双相钢的合金化设计及成分控制 [J]. 炼钢, 2010, 26(5): 16
27 Kamikawa N, Hirohashi M, Sato Y, et al. Tensile behavior of ferrite-martensite dual phase steels with nano-precipitation of vanadium carbides [J]. ISIJ Int., 2015, 55: 1781
28 Kang J Y, Lee H C, Han S H. Effect of Al and Mo on the textures and microstructures of dual phase steels [J]. Mater. Sci. Eng., 2011, A530: 183
29 Bezobrazov Y A, Kolbasnikov N G, Naumov A A. High strength dual-phase steel structure evolution during hot rolling [A]. Materials Science and Technology [C]. Pittsburgh, Pennsylvania: The Association for Iron & Steel Technology, 2012
30 Nikkhah S, Mirzadeh H, Zamani M. Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing [J]. Mater. Chem. Phys., 2019, 230: 1
31 Dai J G, Meng Q G, Zheng H X. High-strength dual-phase steel produced through fast-heating annealing method [J]. Results Mater., 2020, 5: 100069
32 Zamani M, Mirzadeh H, Maleki M. Enhancement of mechanical properties of low carbon dual phase steel via natural aging [J]. Mater. Sci. Eng., 2018, A734: 178
33 Xiong Z P, Kostryzhev A G, Stanford N E, et al. Microstructures and mechanical properties of dual phase steel produced by laboratory simulated strip casting [J]. Mater. Des., 2015, 88: 537
34 Waterschoot T, Kestens L, De Cooman B C. Hot rolling texture development in CMnCrSi dual-phase steels [J]. Metall. Mater. Trans., 2002, 33A: 1091
35 Mao B, Chu S J, Zhang L Y, et al. Effect of intercritical annealing temperature on microstructure, mechanical properties and fracture behavior of high strength cold rolled DP980 [J]. Hot Working Technol., 2014, 43(20): 157
35 毛 博, 储双杰, 张理扬 等. 两相区退火温度对高强冷轧DP980显微组织力学性能和断裂行为的影响 [J]. 热加工工艺, 2014, 43(20): 157
36 Mondal D K, Ray R K. Development of {111} texture during cold rolling and recrystallization of a C-Mn-V dual-phase steel [J]. Mater. Sci. Eng., 1992, A158: 147
37 Dillien S, Seefeldt M, Allain S, et al. EBSD study of the substructure development with cold deformation of dual phase steel [J]. Mater. Sci. Eng., 2010, A527: 947
38 Salehi A R, Serajzadeh S, Taheri A K. A study on the microstructural changes in hot rolling of dual-phase steels [J]. J. Mater. Sci., 2006, 41: 1917
39 Han S H, Choi S H, Choi J K, et al. Effect of hot-rolling processing on texture and r-value of annealed dual-phase steels [J]. Mater. Sci. Eng., 2010, A527: 1686
40 Zheng C W, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model [J]. Acta Mater., 2013, 61: 5504
41 Speich G R, Demarest V A, Miller R L. Formation of austenite during intercritical annealing of dual-phase steels [J]. Metall. Mater. Trans., 1981, 12A: 1419
42 Chowdhury S G, Pereloma E V, Santos D. Evolution of texture at the initial stages of continuous annealing of cold rolled dual-phase steel: Effect of heating rate [J]. Mater. Sci. Eng., 2008, A480: 540
43 Toji Y, Yamashita T, Nakajima K, et al. Effect of Mn partitioning during intercritical annealing on following γ→α transformation and resultant mechanical properties of cold-rolled dual phase steels [J]. ISIJ Int., 2011, 51: 818
44 Jamei F, Mirzadeh H, Zamani M. Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel [J]. Mater. Sci. Eng., 2019, A750: 125
45 Sun S J, Pugh M. Manganese partitioning in dual-phase steel during annealing [J]. Mater. Sci. Eng., 2000, A276: 167
46 Nouroozi M, Mirzadeh H, Zamani M. Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel [J]. Mater. Sci. Eng., 2018, A736: 22
47 Calcagnotto M, Ponge D, Raabe D. Microstructure control during fabrication of ultrafine grained dual-phase steel: Characterization and effect of intercritical annealing parameters [J]. ISIJ Int., 2012, 52: 874
48 Bellavoine M, Dumont M, Dehmas M, et al. Ferrite recrystallization and austenite formation during annealing of cold-rolled advanced high-strength steels: In situ synchrotron X-ray diffraction and modeling [J]. Mater. Charact., 2019, 154: 20
49 Peranio N, Roters F, Raabe D. Microstructure evolution during recrystallization in dual-phase steels [J]. Mater. Sci. Forum, 2012, 715-716: 13
50 Chbihi A, Barbier D, Germain L, et al. Interactions between ferrite recrystallization and austenite formation in high-strength steels [J]. J. Mater. Sci., 2014, 49: 3608
51 Bos C, Mecozzi M G, Sietsma J. A microstructure model for recrystallisation and phase transformation during the dual-phase steel annealing cycle [J]. Computat. Mater. Sci., 2010, 48: 692
52 Ollat M, Militzer M, Massardier V, et al. Mixed-mode model for ferrite-to-austenite phase transformation in dual-phase steel [J]. Computat. Mater. Sci., 2018, 149: 282
53 Ashrafi H, Shamanian M, Emadi R, et al. A novel and simple technique for development of dual phase steels with excellent ductility [J]. Mater. Sci. Eng., 2017, A680: 197
54 Hüseyin A, Havva K Z, Ceylan K. Effect of intercritical annealing parameters on dual phase behavior of commercial low-alloyed steels [J]. J. Iron Steel Res. Int., 2010, 17: 73
55 Asadi M, De Cooman B C, Palkowski H. Influence of martensite volume fraction and cooling rate on the properties of thermomechanically processed dual phase steel [J]. Mater. Sci. Eng., 2012, A538: 42
56 Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J]. Acta Mater., 2011, 59: 658
57 Samuel F H. Effect of dual-phase treatment and tempering on the microstructure and mechanical properties of a high strength, low alloy steel [J]. Mater. Sci. Eng., 1985, 75: 51
58 Zhao Z Z, Xu G, Jin G C, et al. Development of high strength cold rolling C-Mn-Si dual phase steels [J]. Heat Treat. Metals, 2009, 34(1): 14
58 赵征志, 徐 刚, 金光灿 等. 高强度C-Mn-Si系冷轧双相钢的研究与开发 [J]. 金属热处理, 2009, 34(1): 14
59 Banerjee D, Iadicola M, Creuziger A, et al. Finite element modeling of deformation behavior of steel specimens under various loading scenarios [J]. Key Eng. Mater., 2015, 651-653: 969
60 Li H, Gao S, Tian Y, et al. Influence of tempering on mechanical properties of ferrite and martensite dual phase steel [J]. Mater. Today Proceed., 2015, 2(): S667
61 Mazinani M, Poole W J. Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel [J]. Metall. Mater. Trans., 2007, 38A: 328
62 Huang T T, Gou R B, Dan W J, et al. Strain-hardening behaviors of dual phase steels with microstructure features [J]. Mater. Sci. Eng., 2016, A672: 88
63 Ramazani A, Pinard P T, Richter S, et al. Characterisation of microstructure and modelling of flow behaviour of bainite-aided dual-phase steel [J]. Computat. Mater. Sci., 2013, 80: 134
64 Morsdorf L, Jeannin O, Barbier D, et al. Multiple mechanisms of lath martensite plasticity [J]. Acta Mater., 2016, 121: 202
65 Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J. Micromechanics stress-strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding [J]. Mater. Des., 2015, 68: 167
66 Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel [J]. Mater. Sci. Eng., 2014, A604: 135
67 Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel [J]. Acta Metall. Sin., 2013, 49: 159
67 董丹阳, 刘 杨, 王 磊 等. 应变速率对DP780钢动态拉伸变形行为的影响 [J]. 金属学报, 2013, 49: 159
68 Avramovic-Cingara G, Ososkov Y, Jain M K, et al. Effect of martensite distribution on damage behaviour in DP600 dual phase steels [J]. Mater. Sci. Eng., 2009, A516: 7
69 Kocatepe K, Cerah M, Erdogan M. Effect of martensite volume fraction and its morphology on the tensile properties of ferritic ductile iron with dual matrix structures [J]. J. Mater. Process. Technol., 2006, 178: 44
70 Lai Q Q, Brassart L, Bouaziz O, et al. Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling [J]. Int. J. Plast., 2016, 80: 187
71 Han Q H, Kang Y L, Hodgson P D, et al. Quantitative measurement of strain partitioning and slip systems in a dual-phase steel [J]. Scr. Mater., 2013, 69: 13
72 Deng J, Ma J W, Xu Y Y, et al. Effect of martensite distribution on microscopic deformation behavior and mechanical properties of dual phase steels [J]. Acta Metall. Sin., 2015, 51: 1092
72 邓 洁, 马佳伟, 许以阳 等. 马氏体的分布对双相钢微观变形行为和力学性能的影响 [J]. 金属学报, 2015, 51: 1092
73 Ghassemi-Armaki H, Maaß R, Bhat S P, et al. Deformation response of ferrite and martensite in a dual-phase steel [J]. Acta Mater., 2014, 62: 197
74 Badkoobeh F, Mostaan H, Rafiei M, et al. Microstructural characteristics and strengthening mechanisms of ferritic-martensitic dual-phase steels: A review [J]. Metals, 2022, 12: 101
75 Gao B, Hu R, Pan Z Y, et al. Strengthening and ductilization of laminate dual-phase steels with high martensite content [J]. J. Mater. Sci. Technol., 2021, 65: 29
76 Bouquerel J, Verbeken K, De Cooman B. Microstructure-based model for the static mechanical behaviour of multiphase steels [J]. Acta Mater., 2006, 54: 1443
77 Mecking H, Kocks U F. Kinetics of flow and strain-hardening [J]. Acta Metall., 1981, 29: 1865
78 Bag A, Ray K K, Dwarakadasa E S. Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels [J]. Metall. Mater. Trans., 1999, 30A: 1193
79 Paul S K, Kumar A. Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels [J]. Computat. Mater. Sci., 2012, 63: 66
80 Tasan C C, Hoefnagels J P M, Diehl M, et al. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations [J]. Int. J. Plast., 2014, 63: 198
81 Paul S K. Real microstructure based micromechanical model to simulate microstructural level deformation behavior and failure initiation in DP 590 steel [J]. Mater. Des., 2013, 44: 397
82 Sun C T, Vaidya R S. Prediction of composite properties from a representative volume element [J]. Compos. Sci. Technol., 1996, 56: 171
83 Mao B, Liao Y L. Modeling of lüders elongation and work hardening behaviors of ferrite-pearlite dual phase steels under tension [J]. Mech. Mater., 2019, 129: 222
84 Ghadbeigi H, Pinna C, Celotto S. Failure mechanisms in DP600 steel: Initiation, evolution and fracture [J]. Mater. Sci. Eng., 2013, A588: 420
85 Steinbrunner D L, Matlock D K, Krauss G. Void formation during tensile testing of dual phase steels [J]. Metall. Trans., 1988, 19A: 579
86 Das A, Tarafder S, Sivaprasad S, et al. Influence of microstructure and strain rate on the strain partitioning behaviour of dual phase steels [J]. Mater. Sci. Eng., 2019, A754: 348
87 Toda H, Takijiri A, Azuma M, et al. Damage micromechanisms in dual-phase steel investigated with combined phase-and absorption-contrast tomography [J]. Acta Mater., 2017, 126: 401
88 Gerbig D, Srivastava A, Osovski S, et al. Analysis and design of dual-phase steel microstructure for enhanced ductile fracture resistance [J]. Int. J. Fract., 2018, 209: 3
89 Aghaei M, Ziaei-Rad S. A micro mechanical study on DP600 steel under tensile loading using Lemaitre damage model coupled with combined hardening [J]. Mater. Sci. Eng., 2020, A772: 138774
90 Darabi A C, Kadkhodapour J, Anaraki A P, et al. Micromechanical modeling of damage mechanisms in dual-phase steel under different stress states [J]. Eng. Fract. Mech., 2021, 243: 107520
91 Briffod F, Shiraiwa T, Enoki M. Micromechanical investigation of the effect of the crystal orientation on the local deformation path and ductile void nucleation in dual-phase steels [J]. Mater. Sci. Eng., 2021, A826: 141933
92 Tang A, Liu H T, Chen R, et al. Mesoscopic origin of damage nucleation in dual-phase steels [J]. Int. J. Plast., 2021, 137: 102920
93 Nawaz B, Long X Y, Li Y G, et al. Effect of ferrite/martensite on microstructure evolution and mechanical properties of ultrafine vanadium dual-phase steel [J]. J. Mater. Eng. Perform., 2022, doi: 10.1007/s11665-021-06550-1
94 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
95 Yin F, Cheng G J, Xu R, et al. Ultrastrong nanocrystalline stainless steel and its Hall-Petch relationship in the nanoscale [J]. Scr. Mater., 2018, 155: 26
96 Samantaray D, Chaudhuri A, Borah U, et al. Role of grain boundary ferrite layer in dynamic recrystallization of semi-solid processed type 304L austenitic stainless steel [J]. Mater. Lett., 2016, 179: 65
97 Azizi H, Samei J, Zurob H S, et al. A novel approach to producing architectured ultra-high strength dual phase steels [J]. Mater. Sci. Eng., 2019, A833: 142582
98 Wang Y J, Sun J J, Jiang T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility [J]. Acta Mater., 2018, 158: 247
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.