Please wait a minute...
金属学报  2022, Vol. 58 Issue (2): 215-224    DOI: 10.11900/0412.1961.2021.00100
  研究论文 本期目录 | 过刊浏览 |
(Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为
张金勇1,2(), 赵聪聪1, 吴宜谨1, 陈长玖1, 陈正1, 沈宝龙1()
1.中国矿业大学 材料与物理学院 徐州 221116
2.西北工业大学 凝固技术国家重点实验室 西安 710072
Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons
ZHANG Jinyong1,2(), ZHAO Congcong1, WU Yijin1, CHEN Changjiu1, CHEN Zheng1, SHEN Baolong1()
1.School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
2.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
Jinyong ZHANG, Congcong ZHAO, Yijin WU, Changjiu CHEN, Zheng CHEN, Baolong SHEN. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. Acta Metall Sin, 2022, 58(2): 215-224.

全文: PDF(3290 KB)   HTML
摘要: 

基于前期的研究结果,降低Mn和Cr元素的含量,将2者的原子分数均固定在8%,设计出(Fe0.33Co0.33Ni0.33)84 - x Cr8Mn8B x (x = 10、11、13、15和18)合金(简称10B、11B、13B、15B和18B),采用真空熔融甩带法制备出该系列合金的薄带。将合金薄带在不同温度下进行退火处理,通过XRD、DSC、TEM、SEM、万能拉伸试验机、OM、Vickers硬度计等研究了合金薄带的结构特征、晶化行为和力学性能。结果表明:11B合金薄带已完全形成非晶相(am),11B~18B合金薄带加热时都有2个结晶转变放热峰,B元素的添加提高了该系列合金的非晶形成能力(GFA)和热稳定性。11B~18B合金薄带在不同温度退火,bcc相、fcc相和硼化物(M23B6)等1种或多种混合物析出,其结晶行为分别为:11B和13B,[am]→[am′ + bcc]→[am″ + bcc + fcc]→[bcc + fcc + M23B6]→[fcc + M23B6];15B,[am]→[am′ + fcc + bcc]→[am″ + bcc + fcc + M23B6]→[bcc + fcc + M23B6]→[fcc + M23B6];18B,[am]→[am′ + fcc]→[am″ + fcc + M23B6]→[fcc + M23B6] (其中,am′和am″分别为第1次和第2次结晶残余非晶相)。

关键词 高熵非晶合金薄带结构特征热诱导晶化行为相组成力学性能    
Abstract

The high-entropy-amorphous alloy (also called a pseudo-high-entropy alloy), as one of the categories of high-entropy alloys, is being developed as a new type of functional and structural high-strength material due to its advantages of high entropy and amorphousness. To further develop a new high-entropy-amorphous alloy, based on the results of previous studies, (Fe0.33Co0.33Ni0.33)84 - x Cr8Mn8B x (x = 10-18, atomic fraction, %) alloys were synthesized (hereafter, alloys 10B, 11B, 13B, 15B, and 18B). The ribbons with a thickness of 20-30 μm and a width of about 1.5 mm were produced by single-roller melt-spinning. The alloy ribbons were annealed at different temperatures and then characterized by XRD, DSC, TEM, SEM, OM, universal tensile testing machine, and Vickers hardness tester. The results show that the addition of B improves the glass-forming ability and thermal stability of these alloys. The ribbons are fully amorphous at the low B content of 11%. Two exotherms were observed based on the DSC curves for the 11B-18B as-spun ribbons. The crystallization behaviors of 11B-18B alloy ribbons are as follows during heating: 11B and 13B, [am]→[am′ + bcc]→[am″ + bcc + fcc]→[bcc + fcc + M23B6]→[fcc + M23B6]; 15B, [am]→[am′ + fcc + bcc]→[am″ + bcc + fcc + M23B6]→[bcc + fcc + M23B6]→[fcc+ M23B6]; and 18B, [am]→[am′ + fcc]→[am″ + fcc + M23B6]→[fcc + M23B6] (The am′ and am″ are the residual amorphous phases after the first and the second exotherms, respectively)

Key wordshigh-entropy-amorphous alloy ribbon    structural characteristic    heating-induced crystallization behavior    phase composition    mechanical property
收稿日期: 2021-03-03     
ZTFLH:  TG139.8  
基金资助:中央高校基本科研业务费专项资金项目(2018GF13)
作者简介: 沈宝龙,shenbaolong@cumt.edu.cn,主要从事高熵合金、非晶合金材料的研究张金勇,jyzhang@cumt.edu.cn,主要从事钛合金、高熵合金材料的研究
张金勇,男,1982年生,副教授,博士
图1  10B~18B合金细棒和薄带的XRD谱
图2  11B合金薄带TEM明场像、SAED花样及HRTEM像
图3  11B~18B合金薄带的DSC曲线及晶化峰起始温度随B元素含量变化
图4  升温速率为0.17~0.67 K/s时11B~18B合金薄带的DSC曲线,及第1和第2放热峰的Kissinger常数分布
图5  11B、15B和18B合金薄带在不同温度退火1800 s后的XRD谱
图6  11B非晶合金薄带经725 K退火1800 s后的TEM像、SAED花样和HRTEM像
图7  15B非晶合金薄带经711 K退火1800 s后的TEM像、SAED花样和HRTEM像
图8  11B~15B合金薄带的相组成、Vickers硬度随退火温度的变化(退火1800 s)
图9  未经退火处理的11B合金薄带弯折180°后折痕处的SEM像及未经退火处理的10B~18B合金薄带的Vickers硬度随B元素含量的变化
1 Yeh J W , Chen S K , Lin S J , et al . Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Zhu Z W , Gu L , Xie G Q , et al . Relation between icosahedral short-range ordering and plastic deformation in Zr-Nb-Cu-Ni-Al bulk metallic glasses [J]. Acta Mater., 2011, 59: 2814
3 Li J G , Huang R R , Zhang Q , et al . Mechnical properties and behaviors of high entropy alloys [J]. Chin. J. Theor. Appl. Mech., 2020, 52: 333
3 李建国, 黄瑞瑞, 张 倩 等 . 高熵合金的力学性能及变形行为研究进展 [J]. 力学学报, 2020, 52: 333
4 Lu Z P , Lei Z F , Huang H L , et al . Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
4 吕昭平, 雷智锋, 黄海龙 等 . 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
5 Inoue A , Wang Z , Louzguine-Luzgin D V , et al . Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys [J]. J. Alloys Compd., 2015, 638: 197
6 Zhao S F , Shao Y , Liu X , et al . Pseudo-quinary Ti20Zr20Hf20Be20-(Cu20 - x Ni x ) high entropy bulk metallic glasses with large glass forming ability [J]. Mater. Des., 2015, 87: 625
7 Ding J , Inoue A , Han Y , et al . High entropy effect on structure and properties of (Fe, Co, Ni, Cr)-B amorphous alloys [J]. J. Alloys Compd., 2017, 696: 345
8 Wang F , Inoue A , Kong F L , et al . Formation, stability and ultrahigh strength of novel nanostructured alloys by partial crystallization of high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86-89B11-14 amorphous phase [J]. Acta Mater., 2019, 170: 50
9 Wang F , Inoue A , Kong F L , et al . Formation, thermal stability and mechanical properties of high-entropy (Fe0.25Co0.25Ni0.25Cr0.125-Mo0.0625Nb0.0625)100 - x B x (x = 7-14) amorphous alloys [J]. J. Alloys Compd., 2020, 825: 153858
10 Zhao C C , Inoue A , Kong F L , et al . Novel phase decomposition, good soft-magnetic and mechanical properties for high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mn0.125)100 - x B x (x = 9-13) amorphous alloys [J]. J. Alloys Compd., 2020, 843: 155917
11 Campos I , Islas M , González E , et al . Use of fuzzy logic for modeling the growth of Fe2B boride layers during boronizing [J]. Surf. Coat. Technol., 2006, 201: 2717
12 Li M S , Fu S L , Xu W D , et al . Valence electron structure of Fe2B phase and its eigen-brittleness [J]. Acta Metall. Sin., 1995, 31: 201
12 李木森, 傅绍丽, 徐万东 等 . Fe2B相价电子结构及其本质脆性 [J]. 金属学报, 1995, 31: 201
13 Hou L L , Yao Y H , Liang X Y , et al . Microstructure and mechanical properties of Al x FeCoNiB0.1 high entropy alloy [J]. Rare Met. Mater. Eng., 2019, 48: 111
13 侯丽丽, 要玉宏, 梁霄羽 等 . Al x FeCoNiB0.1高熵合金的微观组织和力学性能 [J]. 稀有金属材料与工程, 2019, 48: 111
14 Li M X , Zhao S F , Lu Z , et al . High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
15 Sorescu M , Um C Y , McHenry M E , et al . Thermal behavior of substituted FeCo-based metallic glasses [J]. J. Non-Cryst. Solids, 2005, 351: 663
16 Wang F , Inoue A , Kong F L , et al . Formation, thermal stability and mechanical properties of high entropy (Fe, Co, Ni, Cr, Mo)-B amorphous alloys [J]. J. Alloys Compd., 2018, 732: 637
17 Yuan G Y , Yin J , Ding W J . Structural relaxation and mechanical properties of Mg-Cu-Ni-Gd amorphous alloys [J]. Acta Metall. Sin., 2008, 44: 222
17 袁广银, 尹 健, 丁文江 . Mg-Cu-Ni-Gd非晶合金结构弛豫及力学性能 [J]. 金属学报, 2008, 44: 222
18 Ning X M , Huang J L , Jia S G , et al . Effect of Al on glass forming ability and thermal stability of Mg-Cu-Y alloys [J]. Chin. J. Nonferrous Met., 2013, 23: 1805
18 宁向梅, 黄金亮, 贾淑果 等 . Al对Mg-Cu-Y合金非晶形成能力及热稳定性的影响 [J]. 中国有色金属学报, 2013, 23: 1805
19 Lu Y P , Jiang H , Guo S , et al . A new strategy to design eutectic high-entropy alloys using mixing enthalpy [J]. Intermetallics, 2017, 91: 124
20 Qiao J C , Pelletier J M . Enthalpy relaxation in Cu46Zr45Al7Y2 and Zr55Cu30Ni5Al10 bulk metallic glasses by differential scanning calorimetry (DSC) [J]. Intermetallics, 2011, 19: 9
21 Luo Q , Guo Y L , Liu B , et al . Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44: 171
22 Ge H L , Liu J D , Zheng S J , et al . Boride-induced dislocation channeling in a single crystal Ni-based superalloy [J]. Mater. Lett., 2019, 235: 232
23 Greer A L , Walker I T . Primary crystallization in (Fe, Ni)-based metallic glasses [J]. J. Non-Cryst Solids, 317: 78
24 Singh C V , Warner D H . Mechanisms of Guinier-Preston zone hardening in the athermal limit [J]. Acta Mater., 2010, 58: 5797
25 Matsuda K , Ikeno S , Gamada H , et al . High-resolution electron microscopy on the structure of Guinier-Preston zones in an Al-1.6 mass Pct Mg2Si alloy [J]. Metall. Mater. Trans., 1998, 29A: 1161
26 Dubey P A , Schönfeld B , Kostorz G . Shape and internal structure of Guinier-Preston zones in Al-Ag [J]. Acta Metall. Mater., 1991, 39: 1161
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.