Please wait a minute...
金属学报  2022, Vol. 58 Issue (2): 206-214    DOI: 10.11900/0412.1961.2021.00167
  研究论文 本期目录 | 过刊浏览 |
B清除大气等离子喷涂CuNi熔滴氧化物效应
董昕远, 雒晓涛, 李成新, 李长久()
西安交通大学 金属材料强度国家重点实验室 西安 710049
Oxide Cleaning Effect of In-Flight CuNi Droplet During Atmospheric Plasma Spraying by B Addition
REN Yuan, DONG Xinyuan, SUN Hao, LUO Xiaotao()
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.
Yuan REN, Xinyuan DONG, Hao SUN, Xiaotao LUO. Oxide Cleaning Effect of In-Flight CuNi Droplet During Atmospheric Plasma Spraying by B Addition[J]. Acta Metall Sin, 2022, 58(2): 206-214.

全文: PDF(2220 KB)   HTML
摘要: 

提出了粉末中添加B的成分设计,实现通过B牺牲氧化而保护合金元素不氧化从而发展高温CuNi熔滴自清洁氧化物效应。采用CuNi2B与CuNi4B 2种粉末,通过大气等离子喷涂工艺制备涂层,通过SEM、EDS、XRD和ICP-OES等方法研究了B含量与喷涂距离对CuNi涂层组织结构与性能的影响。结果表明,熔滴可加热至1900℃以上,粉末中B的引入可抑制飞行中高温熔滴中的合金元素的氧化,从而显著降低CuNi涂层中的O含量,而该效果受熔滴中B含量影响显著。采用4%B的CuNi合金粉末时,随着喷涂距离的增加,涂层中的氧化物显著降低,涂层中的O主要由熔滴沉积后的氧化引入,优化喷涂工艺制备的涂层O含量降低至0.43%,显著低于CuNiIn涂层的3.5%。当CuNi粉末含B为1.83%时,在距离超过100 mm,B含量降至0.5%以下时,不足以抑制等离子喷涂过程中飞行颗粒的合金元素氧化,故实现高温熔滴氧化保护的临界B含量约为0.5%。研究发现,B添加可引起合金熔点降低效应与去氧化物净化效应,从而显著增强了CuNi粒子间的冶金结合,提高了涂层的致密性;涂层B含量随粉末成分与工艺参数从0.26%增加至3.61%,而CuNi涂层硬度则随B含量增加从151 HV0.2线性增加至457 HV0.2

关键词 CuNiIn涂层CuNiB涂层组织与性能层间结合自熔效应等离子喷涂    
Abstract

A large amount of air is drawn into the high-temperature plasma jet during the atmospheric plasma spraying (APS) process because it operates in an atmospheric environment, thus oxidizing metal-spray particles. The oxide inclusion resulting from in-flight droplet oxidation inhibits the metallurgical bonding between lamellae in the coating, which limits the applications of plasma-sprayed metal coatings. In this study, a novel approach to create oxide-free molten droplets is proposed by adding B to the CuNi powder to achieve sacrificial oxidation of B in the high-temperature droplet and protect the alloy elements from oxidation. Two powders of CuNi2B and CuNi4B were prepared to deposit the coatings via APS. The effect of B content and spray distance on the microstructure, as well as the O content of CuNi coating, was studied using methods such as SEM, EDS, XRD, and inductively coupled plasma-optical emission spectrum (ICP-CES). The results show that the droplet can be heated to more than 1900oC, and the introduction of B in the powder can inhibit the oxidation of alloy elements in the high-temperature droplet during flight, thus reducing the oxygen in the CuNi coating. Moreover, the deoxidizing effect is affected by the B content of the droplet. Using 4%B CuNi alloy powder and increasing spray distance, the oxide in the coating is reduced. The oxygen in the coating is introduced via oxidation after droplet deposition, and the oxygen content of the coating prepared using the optimized spraying process is reduced to 0.43%, which is considerably lower than 3.5% of CuNiIn coating. An increase in the spray distance and a reduction in B content of CuNi powder, which contains 1.83%B, to 0.5% is insufficient to inhibit the oxidation of the alloying elements of the in-flight particles. The result yields a critical B content of approximately 0.5% for high-temperature droplet oxidation protection. The increase in the B content decreases the melting point, as well as the oxidation of the alloy, thus enhancing the metallurgical bonding between CuNi particles and improving the compactness of the coating. In addition, with the increase in the B content of the coating through the powder composition design and process parameters control from 0.26% to 3.61%, the microhardness of CuNi coating increases from 151 HV0.2 to 457 HV0.2.

Key wordsCuNiIn coating    CuNiB coating    microstructure and property    interlayer bonding    self-fusion effect    plasma spraying
收稿日期: 2021-04-19     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金重点项目(52031010)
作者简介: 李长久,licj@mail.xjtu.edu.cn,主要从事热喷涂层结构与性能、涂层沉积机制的研究
第一联系人:任 媛,女,1995年,硕士生
图1  CuNiIn、CuNi2B和CuNi4B粉末粒子的SEM像
PowderNiInBOCu
CuNiIn31.874.3000.33Bal.
CuNi2B34.5301.830.14Bal.
CuNi4B32.5603.860.08Bal.
表1  原始粉末化学成分 (mass fraction / %)
图2  CuNiIn和CuNiB涂层中O含量随喷涂距离的变化
图3  大气等离子喷涂(APS) CuNiIn、CuNi2B和CuNi4B涂层及粉末的XRD谱
图4  不同喷涂距离条件下APS CuNiIn、CuNi2B及CuNi4B涂层的SEM像
图5  CuNiIn涂层断面组织与典型区域O的EDS结果
图6  喷涂距离对CuNiIn、CuNi2B和CuNi4B涂层孔隙率的影响
图7  喷涂距离120 mm时制备的CuNi4B涂层断面腐蚀前后的SEM像
图8  CuNi4B (粒径30~50 μm)粒子温度随喷涂距离的演变
图9  CuNi2B与CuNi4B涂层B含量随喷涂距离的变化

State

Melting point

oC

Thermal conductivity

W·m-1·oC-1

Density

kg·m-3

Specific heat

J·kg-1·oC-1

Solid127323.458940420
Liquid127372.027940890
表2  CuNi4B合金物性参数
图10  熔融粒子与固态基体界面温度变化
图11  CuNiB涂层B含量与硬度之间的关系
1 China Construction Machinery Society, China Materials Research Society, Editorial Committee of China Materials Engineering . China Materials Engineering Canon. Vol.16, Material Surface Engineering [M]. Beijing: Chemical Industry Press, 2006: 150
1 中国机械工程学会, 中国材料研究学会, 中国材料工程大典编委会 . 中国材料工程大典 第16卷 材料表面工程 (上) [M]. 北京: 化学工业出版社, 2006: 150
2 Sun C , Wang Q M , Tang Y J , et al . Microstructure and initial stage oxidation of NiCoCrAlY coatings deposited by arc ion plating technique [J]. Acta Metall. Sin., 2005, 41: 1167
2 孙 超, 王启民, 唐永吉 等 . 电弧离子镀NiCoCrAlY涂层的组织结构及初期氧化 [J]. 金属学报, 2005, 41: 1167
3 Liu C S , Liu Y H , Yin S . Thermodynamic analysis of flame spray synthesis TiC-Fe cermet coatings [J]. Acta Metall. Sin., 2000, 36: 62
3 刘长松, 刘永合, 殷 声 . 火焰喷涂合成TiC-Fe涂层的热力学分析 [J]. 金属学报, 2000, 36: 62
4 Zhou J Q , Qin S , Min X B , et al . Research on performance of thermal spraying Zn coating [J]. Met. Mater. Metall. Eng., 2016, 44(1): 13
4 周建桥, 秦 松, 闵小兵 等 . 热喷涂Zn防护涂层及其性能研究 [J]. 金属材料与冶金工程, 2016, 44(1): 13
5 Hu W , Zhang Z Y , Liang B N , et al . Preparation of nickel-chromium based powder and microstructure of its atmospheric plasma spraying coating [J]. Therm. Spray Technol., 2019, 11(2): 36
5 胡 伟, 张振宇, 梁补女 等 . 基于大气等离子喷涂的镍铬基粉末制备及其涂层组织结构 [J]. 热喷涂技术, 2019, 11(2): 36
6 Zhang S L , Qiu M K , Chen W Y , et al . Preparation technology of wear resistant coatings [J]. Hot Work. Technol., 2019, 48(10): 25
6 张树玲, 邱明坤, 陈炜晔 等 . 耐磨涂层的制备技术 [J]. 热加工工艺, 2019, 48(10): 25
7 Jin Z A , Zhu L N , Liu M , et al . Research status of aluminum coating prepared by thermal spraying technology and its corrosion resistance in 3.5% NaCl solution [J]. Surf. Technol., 2019, 48(10): 220
7 靳子昂, 朱丽娜, 刘 明 等 . 热喷涂技术制备铝涂层及其在3.5%NaCl溶液中耐腐蚀性的研究现状 [J]. 表面技术, 2019, 48(10): 220
8 Yang H Z , Zou J P , Shi Q , et al . Recent advances for interface diffusion behavior in MCrAlY coatings at elevated temperature oxidation [J]. Rare Met. Mater. Eng., 2020, 49: 2240
9 Zhou Z , Ge Y C , Wang R , et al . Microstructure of W coating by atmosphere plasma spraying on C/C-ZrC-Cu composite [J]. Chin. J. Nonferrous Met., 2018, 28: 2257
9 周 哲, 葛毅成, 汪 沅 等 . C/C-ZrC-Cu复合材料等离子喷涂W组织结构 [J]. 中国有色金属学报, 2018, 28: 2257
10 Rajasekaran B , Raman S G S , Joshi S V , et al . Performance of plasma sprayed and detonation gun sprayed Cu-Ni-In coatings on Ti-6Al-4V under plain fatigue and fretting fatigue loading [J]. Mater. Sci. Eng., 2008, A479: 83
11 Li C J , Ohmori A . Relationships between the microstructure and properties of thermally sprayed deposits [J]. J. Therm. Spray Technol., 2002, 11: 365
12 Wang J , Luo X T , Li C J , et al . Effect of substrate temperature on the microstructure and interface bonding formation of plasma sprayed Ni20Cr splat [J]. Surf. Coat. Technol., 2019, 371: 36
13 Li C J , Ohmori A , McPherson R . The relationship between microstructure and Young's modulus of thermally sprayed ceramic coatings [J]. J. Mater. Sci., 1997, 32: 997
14 Li C J , Wang W Z , He Y . Measurement of fracture toughness of plasma-sprayed Al2O3 coatings using a tapered double cantilever beam method [J]. J. Am. Ceram. Soc., 2003, 86: 1437
15 Tian J J , Luo X T , Wang J , et al . Mechanical performance of plasma-sprayed bulk-like NiCrMo coating with a novel shell-core-structured NiCr-Mo particle [J]. Surf. Coat. Technol., 2018, 353: 179
16 Tian J J , Yao S W , Luo X T , et al . An Effective approach for creating metallurgical self-bonding in plasma-spraying of NiCr-Mo coating by designing shell-core-structured powders [J]. Acta Mater., 2016, 110: 19
17 Vardelle A , Vardelle M , McPherson R , et al . Study on influence of particle temperature and velocity distribution within a plasma jet coating formation [A]. Proceeding of the 9th International Thermal Spray Conference [C]. Hague, Netherlands, Germany: DVS German Welding Society, 1980: 155
18 Valarezo A , Sampath S . An integrated assessment of process-microstructure-property relationships for thermal-sprayed NiCr coatings [J]. J. Therm. Spray Technol., 2011, 20: 1244
19 Li L , Wang X Y , Wei G , et al . Substrate melting during thermal spray splat quenching [J]. Thin Solid Films, 2004, 468: 113
20 Zhang Y A , Matthews S , Hyland M . Role of solidification in the formation of plasma sprayed nickel splats through simulation and experimental observation [J]. Int. J. Heat Mass Transf., 2017, 115: 488
21 Matthews S. Shrouded plasma spray of Ni-20Cr coatings utilizing internal shroud film cooling [J]. Surf. Coat. Technol., 2014, 249: 56
22 Liao X J , Zhang L , Dong X Y , et al . Self-bonding effect development for plasma spraying of stainless steel coating through using Mo-clad stainless steel powders [J]. JOM, 2020, 72: 4613
23 Zeng Z , Kuroda S , Era H . Comparison of oxidation behavior of Ni-20Cr alloy and Ni-base self-fluxing alloy during air plasma spraying [J]. Surf. Coat. Technol., 2009, 204: 69
24 Zeng Z S , Kuroda S , Kawakita J , et al . Effects of some light alloying elements on the oxidation behavior of Fe and Ni-Cr based alloys during air plasma spraying [J]. J. Therm. Spray Technol., 2010, 19: 128
25 Deshpande S , Sampath S , Zhang H . Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings—Case study for Ni-Al [J]. Surf. Coat. Technol., 2006, 200: 5395
26 Li C J , Li W Y . Effect of sprayed powder particle size on the oxidation behavior of MCrAlY materials during high velocity oxygen-fuel deposition [J]. Surf. Coat. Technol., 2003, 162: 31
27 Sun H , Dong X Y , Ren Y , et al . Influences of spray parameters and powder composition on the coating composition, microstructure and properties during atmospheric plasma spraying of NiCrCuB [J]. Therm. Spray Technol., 2021, 13(1): 1
27 孙 浩, 董昕远, 任 媛 . 大气等离子喷涂工艺参数与粉末成分对NiCrCuB涂层成分、组织结构及性能的影响 [J]. 热喷涂技术, 2021, 13(1): 1
28 Dong S J , Wang Y H , Zeng J Y , et al . Performance of plasma-sprayed CuNiIn coatings and Mo coatings subjected to fretting fatigue [J]. Nano Mater. Sci., 2020, 2: 140
29 Li W Y , Liao H , Li J L , et al . Microstructure and microhardness of cold-sprayed CuNiIn coating [J]. Adv. Eng. Mater., 2008, 10: 746
[1] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[2] 张瑞, 刘鹏, 崔传勇, 曲敬龙, 张北江, 杜金辉, 周亦胄, 孙晓峰. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57(10): 1215-1228.
[3] 徐红勇,王文权,黄诗铭,程祥霞,任美璇. 等离子喷焊原位生成TiC硬质增强镍基耐磨层组织与性能*[J]. 金属学报, 2016, 52(11): 1423-1431.
[4] 宫文彪,李任伟,李于朋,孙大千,王文权. CeO2/ZrO2-Y2O3纳米结构热障涂层的高温稳定性及耐腐蚀性能[J]. 金属学报, 2013, 49(5): 593-598.
[5] 付翀,王俊勃,杨敏鸽,侯锦丽,丁秉钧. 等离子喷涂Ag/(Sn0.8La0.2)O2涂层的组织及电性能[J]. 金属学报, 2013, 49(3): 325-329.
[6] 项建英 陈树海 黄继华 赵兴科 张华. 等离子喷涂La2(Zr0.7Ce0.3)2O7热障涂层的抗热震性能[J]. 金属学报, 2012, 48(8): 965-970.
[7] 秦国梁 苏玉虎 王术军. 铝合金/镀锌钢板脉冲MIG电弧熔-钎焊接头组织与性能[J]. 金属学报, 2012, 48(8): 1018-1024.
[8] 刘静 盛洪飞 张保山 彭良明. 含等离子喷涂ZrO2热障涂层的Ti3XC2(X=Al, Si)性能研究[J]. 金属学报, 2011, 47(9): 1141-1146.
[9] 徐娜 张甲 侯万良 全明秀 李荣德 常新春. 热处理对高温固体自润滑涂层组织结构及结合强度的影响[J]. 金属学报, 2009, 45(8): 943-948.
[10] 翟秋亚; 梁存琨; 成军; 徐锦锋; 刘军平; 薛群胜 . 铜基微晶钎料真空钎焊25Cr3MoA/YG6[J]. 金属学报, 2008, 44(9): 1136-1140 .
[11] 潘冶; 王春明; 郑仲瑜; 佟晓辉 . 等离子喷涂纳米SiCf/FeS复合涂层的摩擦学性能[J]. 金属学报, 2008, 44(4): 463-466 .
[12] 王存山; 高亚丽; 姚曼 . 镁合金AZ91HP表面激光重熔Al2O3涂层的组织及性能[J]. 金属学报, 2007, 43(5): 493-497 .
[13] 吕宇鹏; 李士同; 梁栋科; 朱瑞富; 李木森; 雷廷权 . 等离子体熔融钛与羟基磷灰石混合粉颗粒的形态和相组成[J]. 金属学报, 2002, 38(12): 1292-1294 .
[14] 陈汉存;刘正义;庄育智. 等离子喷涂ZrO_2层经激光再熔后的组织变化[J]. 金属学报, 1993, 29(8): 72-76.
[15] 闻立时;钱声伟;胡倾宇;关侃;庄育智. 等离子喷涂超导涂层的组织结构[J]. 金属学报, 1988, 24(3): 286-289.