Please wait a minute...
金属学报  2021, Vol. 57 Issue (3): 327-339    DOI: 10.11900/0412.1961.2020.00244
  研究论文 本期目录 | 过刊浏览 |
大气条件下AlCrON基光谱选择性吸收涂层的热稳定性
王晓波1(), 王墉哲2, 程旭东3, 蒋蓉3
1.晋中学院 数学系 晋中 030619
2.中国科学院上海硅酸盐研究所 上海 200050
3.武汉理工大学 材料复合新技术国家重点实验室 武汉 430070
Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air
WANG Xiaobo1(), WANG Yongzhe2, CHENG Xudong3, JIANG Rong3
1.Department of Mathematics, Jinzhong University, Jinzhong 030619, China
2.Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
3.State Key Laboratory of Advanced Technollogy for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
引用本文:

王晓波, 王墉哲, 程旭东, 蒋蓉. 大气条件下AlCrON基光谱选择性吸收涂层的热稳定性[J]. 金属学报, 2021, 57(3): 327-339.
Xiaobo WANG, Yongzhe WANG, Xudong CHENG, Rong JIANG. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. Acta Metall Sin, 2021, 57(3): 327-339.

全文: PDF(4426 KB)   HTML
摘要: 

设计并制备了Cr/AlCrN/AlCrON/AlCrO光谱选择性吸收涂层,利用GIXRD、SEM、AFM和TEM研究了退火过程中涂层微结构的演变规律。结果表明,该涂层在大气条件下、500℃退火1000 h后,其吸收率由退火前的0.910提高至0.922,发射率由退火前的0.151降低至0.114,表现出优异的热稳定性。微观组织分析表明,AlCrN和AlCrON吸收层在退火过程中发生了部分晶化,形成了氮化物纳米颗粒,这可以增加对光的反射和散射,有助于提高涂层的吸收率;退火后AlCrO减反射层中则形成了少量的Cr2O3和Al2O3纳米颗粒,可以减少涂层表面对太阳光的反射,有助于降低涂层的发射率。同时,退火过程中Al原子向纳米颗粒表面偏聚,并在大气环境下发生氧化形成Al2O3层覆盖在纳米颗粒表面,能够起到阻止纳米颗粒长大的作用,这对于维持AlCrON基光谱选择性吸收涂层微结构和光学性能的稳定性具有重要的作用。此外,涂层中的非晶基体在退火处理中仅发生结构弛豫,并且由于非晶中的原子扩散非常缓慢,有助于抑制高温条件下涂层中纳米颗粒的扩散,保证纳米颗粒不发生团聚。

关键词 光谱选择性吸收涂层金属-电介质涂层热稳定性光学性能    
Abstract

Metal-dielectric coatings consist of extremely fine metal particles embedded in dielectric matrices are considered promising as materials for high-temperature spectral selective absorption coating applications owing to their excellent thermal stability and integrated optical properties. However, during long periods of annealing under high temperatures, metal particles are prone to agglomerating, coarsening, oxidizing, and diffusing across different layers, resulting in changes in composition and microstructures. Correspondingly the metal-dielectric coatings would experience irreversible degradations in optical properties. Hence, a Cr/AlCrN/AlCrON/AlCrO multilayer solar selective absorbing coating has been designed and deposited on stainless steel by cathode arc ion plating to solve the above mentioned issue. This coating exhibited excellent thermal stability as the absorptance increased to 0.922, whereas, the emittance decreased to 0.114 after annealing at 500oC for 1000 h in air. Microstructural characterization indicates that the increase in absorptance is attributed the formation of small amounts of AlN, CrN, and Cr2N nanocrystallites in the amorphous matrices of AlCrN and AlCrON, which can effectively scatter the incident light into a broadband wavelength spectrum by increasing the optical path length in the absorbing layers, resulting in a pronounced enhancement in the absorptivity. A handful of Cr2O3 and Al2O3 nanograins are embedded in the amorphous AlCrO antireflection layer, which can effectively reflect solar infrared radiation and thermal emittance from the substrate, resulting in relatively low infrared emissivity. Besides, good thermal stability is attributed to the excellent thermal stability of the dielectric amorphous matrices and slow atomic diffusion of nanoparticles, which could effectively slow down the inward diffusion of oxygen and avoid the agglomeration of nanoparticles. However, during high-temperature annealing, aluminum atoms in the nanoparticles appear to agglomerate on the surface. These aluminum atoms would oxidize in air and form a layer of Al2O3 covering these nanoparticles, preventing agglomeration and coarsening of nanoparticles.

Key wordsspectrally selective absorbing coating    metal-dielectric coating    thermal stability    optical property
收稿日期: 2020-07-09     
ZTFLH:  TQ174  
基金资助:国家自然科学基金项目(52002159);国家高技术研究发展计划项目(2009AA05Z440)
作者简介: 王晓波,女,1981年生,讲师,博士
Layer

Current

A

Flow rate / (mL·min-1)

Time

s

ArO2N2
Cr9013000900
AlCrN60100030120
AlCrON601201030120
CrAlO6001300120
表1  AlCrON基光谱选择性吸收涂层的制备工艺参数
图1  大气条件下、不同温度退火后AlCrON基光谱选择性吸收涂层的反射光谱

Time

h

500oC600oC
αεPCαεPC
00.9100.151-0.9050.115-
240.9100.144-0.00350.9300.1860.0105
720.9110.1470.00050.9350.181-0.0075
1440.9130.144-0.00350.9350.180-0.0005
3600.9170.1450.00850.9350.1820.0010
表2  大气条件下、不同温度退火后AlCrON基光谱选择性吸收涂层的吸收率和发射率
图2  大气条件下、500℃退火360和1000 h后AlCrON基光谱选择性吸收涂层的反射光谱
图3  沉积态和大气条件下、500℃退火1000 h后AlCrON基光谱选择性吸收涂层的GIXRD谱
图4  大气条件下、500℃退火1000 h前后AlCrON基光谱选择性吸收涂层的表面和截面形貌
PositionOAlCrN
Site 120.8824.5254.60-
Site 220.8622.3256.82-
Site 331.0232.0528.838.10
Site 425.0531.3836.706.87
Site 523.8724.8142.049.28
Average26.6529.4135.868.08
表3  大气条件下、500℃退火1000 h前后AlCrON基光谱选择性吸收涂层表面颗粒的EDS结果 (atomic fraction / %)
图5  大气条件下、500℃退火1000 h前后AlCrON基光谱选择性吸收涂层的表面AFM形貌
图6  大气条件下、500℃退火1000 h前后AlCrON基光谱选择性吸收涂层的TEM像和SAED花样
图7  大气条件下、500℃退火1000 h后AlCrON基光谱选择性吸收涂层中AlCrN吸收层的HRTEM像和FFT图与IFFT图
图8  大气条件下、500℃退火1000 h后AlCrON基光谱选择性吸收涂层中AlCrON吸收层的HRTEM像和FFT图与IFFT图
图9  大气条件下、500℃退火1000 h后AlCrON基光谱选择性吸收涂层中AlCrO减反射层的HRTEM像和FFT图与IFFT图
图10  大气条件下、500℃退火1000 h前后AlCrON基光谱选择性吸收涂层截面中各元素的EDS线扫描图
图11  大气条件下、500℃退火1000 h后AlCrON基光谱选择性吸收涂层截面的HAADF-STEM像和各元素的Mapping图
1 Shi Y Y, Na H Y. Design, Preparation and Evaluation of Solar Spectrally Selective Absorbing Coatings [M]. Beijing: Tsinghua University Press, 2009: 65
1 史月艳, 那鸿悦. 太阳光谱选择性吸收膜系设计、制备及测评 [M]. 北京: 清华大学出版社, 2009: 65
2 Cao A M, Veser G. Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles [J]. Nat. Mater., 2009, 9: 75
3 Kim T K, VanSaders B, Caldwell E, et al. Copper-alloyed spinel black oxides and tandem-structured solar absorbing layers for high-temperature concentrating solar power systems [J]. Sol. Energy, 2016, 132: 257
4 Liu H D, Wan Q, Xu Y R, et al. Long-term thermal stability of CrAlO-based solar selective absorbing coating in elevated temperature air [J]. Sol. Energy Mater. Sol. Cells, 2015, 134: 261
5 Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
6 Ge J P, Zhang Q, Zhang T R, et al. Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability [J]. Angew. Chem. Int. Edit., 2008, 47: 8924
7 Joo S H, Park J Y, Tsung C K, et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions[J]. Nat. Mater., 2008, 8: 126
8 Gao T, Jelle B P, Gustavsen A. Core-shell-typed Ag@SiO2 nanoparticles as solar selective coating materials [J]. J. Nanopart. Res., 2012, 15: 1370
9 Barshilia H C, Selvakumar N, Rajam K S, et al., Optical properties and thermal stability of TiAlN/AlON tandem absorber prepared by reactive DC/RF magnetron sputtering [J]. Sol. Energy Mater. Sol. Cells, 2008, 92: 1425
10 Barshilia H C, Selvakumar N, Rajam K S. Thermal stability of TiAlN/TiAlON/Si3N4 tandem absorbers prepared by reactive direct current magnetron sputtering [J]. J. Vac. Sci. Technol., 2007, 25A: 383
11 Wu L, Gao J H, Liu Z M, et al. Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications [J]. Sol. Energy Mater. Sol. Cells, 2013, 114C: 186
12 Du M, Hao L, Mi J, et al. Optimization design of Ti0.5Al0.5N/Ti0.25Al0.75N/AlN coating used for solar selective applications [J]. Sol. Energy Mater. Sol. Cells, 2011, 95: 1193
13 Barshilia H C. Growth, characterization and performance evaluation of Ti/AlTiN/AlTiON/AlTiO high temperature spectrally selective coatings for solar thermal power applications [J]. Sol. Energy Mater. Sol. Cells, 2014, 130: 322
14 Liu H D, Fu T R, Duan M H, et al. Structure and thermal stability of spectrally selective absorber based on AlCrON coating for solar-thermal conversion applications[J]. Sol. Energy Mater. Sol. Cells, 2016, 157: 108
15 Gong D Q, Liu H D, Luo G., et al. Thermal aging test of AlCrNO-based solar selective absorbing coatings prepared by cathodic arc plating [J]. Sol. Energy Mater. Sol. Cells, 2015, 136: 167
16 Zou C W, Xie W, Shao L X. Functional multi-layer solar spectral selective absorbing coatings of AlCrSiN/AlCrSiON/AlCrO for high temperature applications [J]. Sol. Energy Mater. Sol. Cells, 2016, 153: 9
17 Liu Y, Wang Z F, Lei D Q, et al. A new solar spectral selective absorbing coating of SS-(Fe3O4)/Mo/TiZrN/TiZrON/SiON for high temperature application [J]. Sol. Energy Mater. Sol. Cells, 2014, 127: 143
18 Pavlović T M, Radonjić I S, Milosavljević D D. et al. A review of concentrating solar power plants in the world and their potential use in Serbia [J]. Renew. Sust. Energy Rev., 2012, 16: 3891
19 Koehl M. Durability of solar energy materials [J]. Renew. Energy, 2001, 24: 597
20 Zhang K, Hao L, Du M, et al. A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings [J]. Renew. Sust. Energy Rev., 2017, 67: 1282
21 Antonaia A, Castaldo A, Addonizio M L, et al. Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature [J]. Sol. Energy Mater. Sol. Cells, 2010, 94: 1604
22 Liu Y, Wang C, Xue Y F. The spectral properties and thermal stability of NbTiON solar selective absorbing coating [J]. Sol. Energy Mater. Sol. Cells, 2012, 96: 131
23 Yang D, Zhao X, Liu Y, et al. Enhanced thermal stability of solar selective absorber based on nano-multilayered AlCrSiO films [J]. Sol. Energy Mater. Sol. Cells, 2020, 207: 110331
24 Selvakumar N, Barshilia H C. Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications [J]. Sol. Energy Mater. Sol. Cells, 2012, 98: 1
25 Darling K A, VanLeeuwen B K, Semones J E, et al. Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection [J]. Mater. Sci. Eng., 2011, A528: 4365
26 Murdoch H A, Schuh C A. Stability of binary nanocrystalline alloys against grain growth and phase separation [J]. Acta Mater., 2013, 61: 2121
27 Shen Y, Shi Y Y, Wang F C. High-temperature optical properties and stability of AlxOy-AlNx-Al solar selective absorbing surface prepared by DC magnetron reactive sputtering [J]. Sol. Energy Mater. Sol. Cells, 2003, 77: 393
28 Barshilia H C, Selvakumar N, Rajam K S, et al. Spectrally selective NbAlN/NbAlON/Si3N4 tandem absorber for high-temperature solar applications [J]. Sol. Energy Mater. Sol. Cells, 2008, 92: 495
29 Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
30 Guesmi H, Louis C, Delannoy L. Chemisorbed atomic oxygen inducing Pd segregation in PdAu(111) alloy: Energetic and electronic DFT analysis [J]. Chem. Phys. Lett., 2011, 503: 97
31 Rebouta L, Capela P, Andritschky M, et al. Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications [J]. Sol. Energy Mater. Sol. Cells, 2012, 105: 202
[1] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[4] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[5] 彭艳艳, 余黎明, 刘永长, 马宗青, 刘晨曦, 李冲, 李会军. 650 ℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56(8): 1075-1083.
[6] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[7] 邹建雄,刘波,林黎蔚,任丁,焦国华,鲁远甫,徐可为. MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究[J]. 金属学报, 2017, 53(1): 31-37.
[8] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[9] 刘刚, 李超, 马野, 张瑞君, 刘勇凯, 沙玉辉. 异步轧制硅钢表面纳米结构稳定性与渗硅行为*[J]. 金属学报, 2016, 52(3): 307-312.
[10] 吴法宇,李建伟,齐羿,丁梧桐,樊子铭,周艳文. 粉末靶射频磁控溅射非晶Al2O3薄膜的制备与性能研究*[J]. 金属学报, 2016, 52(12): 1595-1600.
[11] 杨滨, 李鑫, 罗文东, 李宇翔. 微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响[J]. 金属学报, 2015, 51(4): 465-472.
[12] 柳文波,张弛,杨志刚,夏志新,高古辉,翁宇庆. 表面纳米化对低活化钢的组织及其热稳定性的影响[J]. 金属学报, 2013, 49(6): 707-716.
[13] 张立东,王飞,陈顺礼,汪渊. AlCrTaTiNi/(AlCrTaTiNi)N双层扩散阻挡层的制备及热稳定性[J]. 金属学报, 2013, 49(12): 1611-1616.
[14] 方璐,丁贤飞,张来启,郝国建,林均品. 长期热循环条件下全片层高Nb-TiAl合金显微组织稳定性[J]. 金属学报, 2013, 49(11): 1416-1422.
[15] 张彦坡,任丁,林黎蔚,杨斌,王珊玲,刘波,徐可为. Cu/Cu(Ge, Zr)/SiO2/Si多层膜界面可控反应及热稳定性研究[J]. 金属学报, 2013, 49(10): 1264-1268.