|
|
大气条件下AlCrON基光谱选择性吸收涂层的热稳定性 |
王晓波1( ), 王墉哲2, 程旭东3, 蒋蓉3 |
1.晋中学院 数学系 晋中 030619 2.中国科学院上海硅酸盐研究所 上海 200050 3.武汉理工大学 材料复合新技术国家重点实验室 武汉 430070 |
|
Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air |
WANG Xiaobo1( ), WANG Yongzhe2, CHENG Xudong3, JIANG Rong3 |
1.Department of Mathematics, Jinzhong University, Jinzhong 030619, China 2.Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China 3.State Key Laboratory of Advanced Technollogy for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China |
引用本文:
王晓波, 王墉哲, 程旭东, 蒋蓉. 大气条件下AlCrON基光谱选择性吸收涂层的热稳定性[J]. 金属学报, 2021, 57(3): 327-339.
Xiaobo WANG,
Yongzhe WANG,
Xudong CHENG,
Rong JIANG.
Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. Acta Metall Sin, 2021, 57(3): 327-339.
1 |
Shi Y Y, Na H Y. Design, Preparation and Evaluation of Solar Spectrally Selective Absorbing Coatings [M]. Beijing: Tsinghua University Press, 2009: 65
|
1 |
史月艳, 那鸿悦. 太阳光谱选择性吸收膜系设计、制备及测评 [M]. 北京: 清华大学出版社, 2009: 65
|
2 |
Cao A M, Veser G. Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles [J]. Nat. Mater., 2009, 9: 75
|
3 |
Kim T K, VanSaders B, Caldwell E, et al. Copper-alloyed spinel black oxides and tandem-structured solar absorbing layers for high-temperature concentrating solar power systems [J]. Sol. Energy, 2016, 132: 257
|
4 |
Liu H D, Wan Q, Xu Y R, et al. Long-term thermal stability of CrAlO-based solar selective absorbing coating in elevated temperature air [J]. Sol. Energy Mater. Sol. Cells, 2015, 134: 261
|
5 |
Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
|
6 |
Ge J P, Zhang Q, Zhang T R, et al. Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability [J]. Angew. Chem. Int. Edit., 2008, 47: 8924
|
7 |
Joo S H, Park J Y, Tsung C K, et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions[J]. Nat. Mater., 2008, 8: 126
|
8 |
Gao T, Jelle B P, Gustavsen A. Core-shell-typed Ag@SiO2 nanoparticles as solar selective coating materials [J]. J. Nanopart. Res., 2012, 15: 1370
|
9 |
Barshilia H C, Selvakumar N, Rajam K S, et al., Optical properties and thermal stability of TiAlN/AlON tandem absorber prepared by reactive DC/RF magnetron sputtering [J]. Sol. Energy Mater. Sol. Cells, 2008, 92: 1425
|
10 |
Barshilia H C, Selvakumar N, Rajam K S. Thermal stability of TiAlN/TiAlON/Si3N4 tandem absorbers prepared by reactive direct current magnetron sputtering [J]. J. Vac. Sci. Technol., 2007, 25A: 383
|
11 |
Wu L, Gao J H, Liu Z M, et al. Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications [J]. Sol. Energy Mater. Sol. Cells, 2013, 114C: 186
|
12 |
Du M, Hao L, Mi J, et al. Optimization design of Ti0.5Al0.5N/Ti0.25Al0.75N/AlN coating used for solar selective applications [J]. Sol. Energy Mater. Sol. Cells, 2011, 95: 1193
|
13 |
Barshilia H C. Growth, characterization and performance evaluation of Ti/AlTiN/AlTiON/AlTiO high temperature spectrally selective coatings for solar thermal power applications [J]. Sol. Energy Mater. Sol. Cells, 2014, 130: 322
|
14 |
Liu H D, Fu T R, Duan M H, et al. Structure and thermal stability of spectrally selective absorber based on AlCrON coating for solar-thermal conversion applications[J]. Sol. Energy Mater. Sol. Cells, 2016, 157: 108
|
15 |
Gong D Q, Liu H D, Luo G., et al. Thermal aging test of AlCrNO-based solar selective absorbing coatings prepared by cathodic arc plating [J]. Sol. Energy Mater. Sol. Cells, 2015, 136: 167
|
16 |
Zou C W, Xie W, Shao L X. Functional multi-layer solar spectral selective absorbing coatings of AlCrSiN/AlCrSiON/AlCrO for high temperature applications [J]. Sol. Energy Mater. Sol. Cells, 2016, 153: 9
|
17 |
Liu Y, Wang Z F, Lei D Q, et al. A new solar spectral selective absorbing coating of SS-(Fe3O4)/Mo/TiZrN/TiZrON/SiON for high temperature application [J]. Sol. Energy Mater. Sol. Cells, 2014, 127: 143
|
18 |
Pavlović T M, Radonjić I S, Milosavljević D D. et al. A review of concentrating solar power plants in the world and their potential use in Serbia [J]. Renew. Sust. Energy Rev., 2012, 16: 3891
|
19 |
Koehl M. Durability of solar energy materials [J]. Renew. Energy, 2001, 24: 597
|
20 |
Zhang K, Hao L, Du M, et al. A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings [J]. Renew. Sust. Energy Rev., 2017, 67: 1282
|
21 |
Antonaia A, Castaldo A, Addonizio M L, et al. Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature [J]. Sol. Energy Mater. Sol. Cells, 2010, 94: 1604
|
22 |
Liu Y, Wang C, Xue Y F. The spectral properties and thermal stability of NbTiON solar selective absorbing coating [J]. Sol. Energy Mater. Sol. Cells, 2012, 96: 131
|
23 |
Yang D, Zhao X, Liu Y, et al. Enhanced thermal stability of solar selective absorber based on nano-multilayered AlCrSiO films [J]. Sol. Energy Mater. Sol. Cells, 2020, 207: 110331
|
24 |
Selvakumar N, Barshilia H C. Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications [J]. Sol. Energy Mater. Sol. Cells, 2012, 98: 1
|
25 |
Darling K A, VanLeeuwen B K, Semones J E, et al. Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection [J]. Mater. Sci. Eng., 2011, A528: 4365
|
26 |
Murdoch H A, Schuh C A. Stability of binary nanocrystalline alloys against grain growth and phase separation [J]. Acta Mater., 2013, 61: 2121
|
27 |
Shen Y, Shi Y Y, Wang F C. High-temperature optical properties and stability of AlxOy-AlNx-Al solar selective absorbing surface prepared by DC magnetron reactive sputtering [J]. Sol. Energy Mater. Sol. Cells, 2003, 77: 393
|
28 |
Barshilia H C, Selvakumar N, Rajam K S, et al. Spectrally selective NbAlN/NbAlON/Si3N4 tandem absorber for high-temperature solar applications [J]. Sol. Energy Mater. Sol. Cells, 2008, 92: 495
|
29 |
Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
|
30 |
Guesmi H, Louis C, Delannoy L. Chemisorbed atomic oxygen inducing Pd segregation in PdAu(111) alloy: Energetic and electronic DFT analysis [J]. Chem. Phys. Lett., 2011, 503: 97
|
31 |
Rebouta L, Capela P, Andritschky M, et al. Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications [J]. Sol. Energy Mater. Sol. Cells, 2012, 105: 202
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|