Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 761-768    DOI: 10.11900/0412.1961.2015.00572
  论文 本期目录 | 过刊浏览 |
共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*
郭巍巍1(),齐成军1,李小武1,2
1 东北大学材料科学与工程学院材料物理与化学研究所, 沈阳 110819
2 东北大学材料各向异性与织构教育部重点实验室, 沈阳 110819
INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS
Weiwei GUO1(),Chengjun QI1,Xiaowu LI1,2
1 Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
引用本文:

郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
Weiwei GUO, Chengjun QI, Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS[J]. Acta Metall Sin, 2016, 52(6): 761-768.

全文: PDF(1137 KB)   HTML
摘要: 

在不同塑性应变幅下对共轭双滑移和[017]临界双滑移取向Cu单晶体进行疲劳实验直至循环饱和, 然后在不同温度下进行退火处理, 考察了其位错结构的热稳定性. 结果表明, 300 ℃退火处理后, 位错结构发生了明显的回复; 500和800 ℃退火处理后, 均发生了明显的再结晶现象, 并伴随退火孪晶的形成. 不同取向Cu单晶体循环变形后形成不同的位错结构, 其热稳定性由高到低依次为: 脉络结构、驻留滑移带(PSB)结构、迷宫或胞结构. 不同取向疲劳变形Cu单晶体中形成的退火孪晶均沿着疲劳后开动的滑移面方向发展, 疲劳后的滑移变形程度越高, 退火后形成的孪晶数量则越多. 但过高的退火温度(如800 ℃)会加快再结晶晶界的迁移速率, 进而抑制孪晶的形成, 致使孪晶数量有所减少.

关键词 Cu单晶体疲劳位错结构热稳定性晶体取向再结晶退火孪晶    
Abstract

It is well known that the cyclic deformation behavior and dislocation structures of Cu single crystals with different orientations have been systematically investigated and understood. However, there is as yet no general and unequivocal knowledge of the thermal stability of fatigue-induced dislocation structures in Cu single crystals, which is particularly significant for the further improvement of low energy dislocation structure (LEDS) theory. In previous work, the thermal stability of fatigue dislocation structures in 18 41] single-slip and coplanar double-slip Cu single crystals have been reported. For deeply understanding the orientation-dependent thermal stability of fatigue dislocation structures, in the present work, conjugate and [017] critical double-slip-oriented Cu single crystals were cyclically deformed at different plastic strain amplitudes γpl up to saturation, and then annealed at different temperatures (300, 500 and 800 ℃) for 30 min, to examine the thermal stability of various fatigue-induced dislocation structures. It was found that an obvious recovery has occurred in various dislocation structures at 300 ℃. At the higher temperatures, e.g., 500 and 800 ℃, a remarkable recrystallization phenomenon takes place together with the formation of many annealing twins. The thermal stability of various dislocation structures produced in fatigued Cu single crystals with different orientations from high to low are on the order of vein structure, persistent slip band (PSB) structure, labyrinth structure and dislocation cells. The annealing twins formed in Cu single crystals with different orientations all develop strictly along the dislocation slip planes, which have been operated under fatigue deformation. The more serious the fatigue-induced slip deformation, the greater the amount of annealing twins would be. Furthermore, an over high annealing temperature, e.g. 800 ℃, would greatly speed up the migration of boundaries of recrystallized grains to restrain the formation of annealing twins, leading to, more or less, the decrease in the amount of twins.

Key wordsCu single crystal    fatigue dislocation structure    thermal stability    crystallographic orientation    recrystallization    annealing twin
收稿日期: 2015-11-09     
基金资助:* 国家自然科学基金项目51071041, 51231002, 51271054和51571058, 以及高等学校博士学科点专项科研基金博导类项目20110042110017资助
Sample γpl N / cyc γpl, cum τs / MPa
1.5×10-4 82000 49.2 29.6
1.5×10-3 10100 60.0 29.4
[017] 6.5×10-3 2620 68.1 49.2
表1  和[017] Cu单晶体疲劳实验条件和循环饱和数据
图1  Cu单晶体在应变幅γpl =1.5×10-4下循环饱和位错结构及其在不同温度退火30 min后的微观结构
图2  Cu单晶体在应变幅γpl=1.5×10-3下循环饱和位错结构及其在不同温度退火30 min后的微观结构
图3  [017] Cu单晶体在应变幅γpl=6.5×10-3下循环饱和位错结构及其在不同温度退火30 min后的微观结构
图4  Cu单晶体在应变幅γpl =1.5×10-4下循环饱和后再在不同温度退火30 min后微观结构的TEM像
图5  Cu单晶体在应变幅γpl= 1.5×10-3下循环饱和后再在不同温度退火30 min后微观结构的TEM像
图6  [017] Cu单晶体在应变蝠γpl=6.5×10-3下循环饱和后再在不同温度退火30 min后微观结构的TEM像
图7  [017] Cu单晶体在应变幅γpl =6.5×10-3下循环变形饱和后的DSC曲线
[1] Mughrabi H.Mater Sci Eng, 1978; 33: 207
[2] Jin N Y, Winter A T.Acta Metall, 1984; 32: 989
[3] Ackermann F, Kubin L P, Lepinous J, Mughrabi H.Acta Metall, 1984; 32: 715
[4] Basinski Z S, Basinski S J.Prog Mater Sci, 1992; 36: 89
[5] Suresh S.Fatigue of Materials. 2nd Ed., London: Cambridge University Press, 1998: 28
[6] Li X W, Hu Y M, Wang Z G.Mater Sci Eng, 1998; A248: 299
[7] Li X W, Wang Z G, Li S X.Phil Mag Lett, 1999; 79: 715
[8] Li X W, Wang Z G, Li S X.Mater Sci Eng, 1999; A260: 132
[9] Li X W, Zhang Z F, Wang Z G, Li S X, Umakoshi Y. Defect Diffusion Forum, 2001; 188-199: 153
[10] Li X W, Umakoshi Y, Gong B, Li S X, Wang Z G.Mater Sci Eng, 2002; A333: 51
[11] Zhou Y, Li X W, Yang R Q.Int J Mater Res, 2008; 99: 958
[12] Li P, Li S X, Wang Z G, Zhang Z F.Acta Mater, 2010; 58: 3281
[13] Tahata T, Fujita H, Hiraoka M, Onishi I C.Philos Mag, 1983; 47A: 841
[14] Wang Z R.Scr Mater, 1998; 39: 493
[15] Chen S, Gottstein S.Mater Sci Eng, 1989; 110: 9
[16] Zhu R, Li S X, Li Y, Li M Y, Chao Y S.Acta Metall Sin, 2004; 40: 467
[16] (朱荣, 李守新, 李勇, 李明扬, 晁月盛. 金属学报, 2004; 40: 467)
[17] Xiao S H, Guo J D, Wu S D, He G H, Li S X.Scr Mater, 2002; 41: 1
[18] Guo W W, Qi C J, Yan Y, Li X W.Chin J Nonferrous Met, 2014; 24: 2718
[18] (郭巍巍, 齐成军, 颜莹, 李小武. 中国有色金属学报, 2014; 24: 2718)
[19] Guo W W, Ren H, Qi C J, Li X W.Acta Phys Sin, 2012; 61: 156201-1
[19] (郭巍巍, 任焕, 齐成军, 李小武. 物理学报, 2012; 61: 156201-1)
[20] Guo W W, Qi C J, Li X W.Acta Metall Sin, 2013; 49: 107
[20] (郭巍巍, 齐成军, 李小武. 金属学报, 2013; 49: 107)
[21] Carpenter H, Tamura S.Proc R Soc, 1926; 113A: 161
[22] Burke J E Jr.J Met, 1950; 188: 1324
[23] Fullman R L, Fischer J C.J Appl Phys, 1951; 22: 1350
[24] Gleiter H.Acta Metall, 1969; 17: 1421
[25] Gindraux G, Form W.J Inst Met, 1973; 101: 85
[26] Dash S, Brown N.Acta Metall, 1963; 11: 1067
[27] Meyers M A, Murr L E.Acta Metall, 1978; 26: 951
[28] Mahajan S, Pande C S, Imam M A, Rath B B.Acta Mater, 1997; 45: 2633
[29] Li X W, Zhou Y.J Mater Sci, 2007; 42: 4716
[30] Guo W W, Wang X M, Li X W.Mater Trans, 2010; 51: 887
[31] Xia S, Li H, Zhou B X, Chen W J.Chin J Nature, 2010; 32: 94
[31] (夏爽, 李慧, 周邦新, 陈文觉. 自然杂志, 2010; 32: 94)
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[5] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[6] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[7] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[8] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[9] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[10] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[12] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[13] 姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
[14] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[15] 王晓波, 王墉哲, 程旭东, 蒋蓉. 大气条件下AlCrON基光谱选择性吸收涂层的热稳定性[J]. 金属学报, 2021, 57(3): 327-339.