Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 761-768    DOI: 10.11900/0412.1961.2015.00572
  论文 本期目录 | 过刊浏览 |
共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*
郭巍巍1(),齐成军1,李小武1,2
1 东北大学材料科学与工程学院材料物理与化学研究所, 沈阳 110819
2 东北大学材料各向异性与织构教育部重点实验室, 沈阳 110819
INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS
Weiwei GUO1(),Chengjun QI1,Xiaowu LI1,2
1 Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
全文: PDF(1137 KB)   HTML
摘要: 

在不同塑性应变幅下对共轭双滑移和[017]临界双滑移取向Cu单晶体进行疲劳实验直至循环饱和, 然后在不同温度下进行退火处理, 考察了其位错结构的热稳定性. 结果表明, 300 ℃退火处理后, 位错结构发生了明显的回复; 500和800 ℃退火处理后, 均发生了明显的再结晶现象, 并伴随退火孪晶的形成. 不同取向Cu单晶体循环变形后形成不同的位错结构, 其热稳定性由高到低依次为: 脉络结构、驻留滑移带(PSB)结构、迷宫或胞结构. 不同取向疲劳变形Cu单晶体中形成的退火孪晶均沿着疲劳后开动的滑移面方向发展, 疲劳后的滑移变形程度越高, 退火后形成的孪晶数量则越多. 但过高的退火温度(如800 ℃)会加快再结晶晶界的迁移速率, 进而抑制孪晶的形成, 致使孪晶数量有所减少.

关键词 Cu单晶体疲劳位错结构热稳定性晶体取向再结晶退火孪晶    
Abstract

It is well known that the cyclic deformation behavior and dislocation structures of Cu single crystals with different orientations have been systematically investigated and understood. However, there is as yet no general and unequivocal knowledge of the thermal stability of fatigue-induced dislocation structures in Cu single crystals, which is particularly significant for the further improvement of low energy dislocation structure (LEDS) theory. In previous work, the thermal stability of fatigue dislocation structures in 18 41] single-slip and coplanar double-slip Cu single crystals have been reported. For deeply understanding the orientation-dependent thermal stability of fatigue dislocation structures, in the present work, conjugate and [017] critical double-slip-oriented Cu single crystals were cyclically deformed at different plastic strain amplitudes γpl up to saturation, and then annealed at different temperatures (300, 500 and 800 ℃) for 30 min, to examine the thermal stability of various fatigue-induced dislocation structures. It was found that an obvious recovery has occurred in various dislocation structures at 300 ℃. At the higher temperatures, e.g., 500 and 800 ℃, a remarkable recrystallization phenomenon takes place together with the formation of many annealing twins. The thermal stability of various dislocation structures produced in fatigued Cu single crystals with different orientations from high to low are on the order of vein structure, persistent slip band (PSB) structure, labyrinth structure and dislocation cells. The annealing twins formed in Cu single crystals with different orientations all develop strictly along the dislocation slip planes, which have been operated under fatigue deformation. The more serious the fatigue-induced slip deformation, the greater the amount of annealing twins would be. Furthermore, an over high annealing temperature, e.g. 800 ℃, would greatly speed up the migration of boundaries of recrystallized grains to restrain the formation of annealing twins, leading to, more or less, the decrease in the amount of twins.

Key wordsCu single crystal    fatigue dislocation structure    thermal stability    crystallographic orientation    recrystallization    annealing twin
收稿日期: 2015-11-09     
基金资助:* 国家自然科学基金项目51071041, 51231002, 51271054和51571058, 以及高等学校博士学科点专项科研基金博导类项目20110042110017资助

引用本文:

郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
Weiwei GUO, Chengjun QI, Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS. Acta Metall Sin, 2016, 52(6): 761-768.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00572      或      https://www.ams.org.cn/CN/Y2016/V52/I6/761

Sample γpl N / cyc γpl, cum τs / MPa
1.5×10-4 82000 49.2 29.6
1.5×10-3 10100 60.0 29.4
[017] 6.5×10-3 2620 68.1 49.2
表1  和[017] Cu单晶体疲劳实验条件和循环饱和数据
图1  Cu单晶体在应变幅γpl =1.5×10-4下循环饱和位错结构及其在不同温度退火30 min后的微观结构
图2  Cu单晶体在应变幅γpl=1.5×10-3下循环饱和位错结构及其在不同温度退火30 min后的微观结构
图3  [017] Cu单晶体在应变幅γpl=6.5×10-3下循环饱和位错结构及其在不同温度退火30 min后的微观结构
图4  Cu单晶体在应变幅γpl =1.5×10-4下循环饱和后再在不同温度退火30 min后微观结构的TEM像
图5  Cu单晶体在应变幅γpl= 1.5×10-3下循环饱和后再在不同温度退火30 min后微观结构的TEM像
图6  [017] Cu单晶体在应变蝠γpl=6.5×10-3下循环饱和后再在不同温度退火30 min后微观结构的TEM像
图7  [017] Cu单晶体在应变幅γpl =6.5×10-3下循环变形饱和后的DSC曲线
[1] Mughrabi H.Mater Sci Eng, 1978; 33: 207
[2] Jin N Y, Winter A T.Acta Metall, 1984; 32: 989
[3] Ackermann F, Kubin L P, Lepinous J, Mughrabi H.Acta Metall, 1984; 32: 715
[4] Basinski Z S, Basinski S J.Prog Mater Sci, 1992; 36: 89
[5] Suresh S.Fatigue of Materials. 2nd Ed., London: Cambridge University Press, 1998: 28
[6] Li X W, Hu Y M, Wang Z G.Mater Sci Eng, 1998; A248: 299
[7] Li X W, Wang Z G, Li S X.Phil Mag Lett, 1999; 79: 715
[8] Li X W, Wang Z G, Li S X.Mater Sci Eng, 1999; A260: 132
[9] Li X W, Zhang Z F, Wang Z G, Li S X, Umakoshi Y. Defect Diffusion Forum, 2001; 188-199: 153
[10] Li X W, Umakoshi Y, Gong B, Li S X, Wang Z G.Mater Sci Eng, 2002; A333: 51
[11] Zhou Y, Li X W, Yang R Q.Int J Mater Res, 2008; 99: 958
[12] Li P, Li S X, Wang Z G, Zhang Z F.Acta Mater, 2010; 58: 3281
[13] Tahata T, Fujita H, Hiraoka M, Onishi I C.Philos Mag, 1983; 47A: 841
[14] Wang Z R.Scr Mater, 1998; 39: 493
[15] Chen S, Gottstein S.Mater Sci Eng, 1989; 110: 9
[16] Zhu R, Li S X, Li Y, Li M Y, Chao Y S.Acta Metall Sin, 2004; 40: 467
[16] (朱荣, 李守新, 李勇, 李明扬, 晁月盛. 金属学报, 2004; 40: 467)
[17] Xiao S H, Guo J D, Wu S D, He G H, Li S X.Scr Mater, 2002; 41: 1
[18] Guo W W, Qi C J, Yan Y, Li X W.Chin J Nonferrous Met, 2014; 24: 2718
[18] (郭巍巍, 齐成军, 颜莹, 李小武. 中国有色金属学报, 2014; 24: 2718)
[19] Guo W W, Ren H, Qi C J, Li X W.Acta Phys Sin, 2012; 61: 156201-1
[19] (郭巍巍, 任焕, 齐成军, 李小武. 物理学报, 2012; 61: 156201-1)
[20] Guo W W, Qi C J, Li X W.Acta Metall Sin, 2013; 49: 107
[20] (郭巍巍, 齐成军, 李小武. 金属学报, 2013; 49: 107)
[21] Carpenter H, Tamura S.Proc R Soc, 1926; 113A: 161
[22] Burke J E Jr.J Met, 1950; 188: 1324
[23] Fullman R L, Fischer J C.J Appl Phys, 1951; 22: 1350
[24] Gleiter H.Acta Metall, 1969; 17: 1421
[25] Gindraux G, Form W.J Inst Met, 1973; 101: 85
[26] Dash S, Brown N.Acta Metall, 1963; 11: 1067
[27] Meyers M A, Murr L E.Acta Metall, 1978; 26: 951
[28] Mahajan S, Pande C S, Imam M A, Rath B B.Acta Mater, 1997; 45: 2633
[29] Li X W, Zhou Y.J Mater Sci, 2007; 42: 4716
[30] Guo W W, Wang X M, Li X W.Mater Trans, 2010; 51: 887
[31] Xia S, Li H, Zhou B X, Chen W J.Chin J Nature, 2010; 32: 94
[31] (夏爽, 李慧, 周邦新, 陈文觉. 自然杂志, 2010; 32: 94)
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[3] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[4] 孙衡,林小娉,周兵,赵圣诗,唐琴,董允. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为[J]. 金属学报, 2020, 56(3): 340-350.
[5] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[6] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[7] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[8] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[9] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[10] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[11] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[12] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[13] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[14] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[15] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.