Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 707-716    DOI: 10.3724/SP.J.1037.2012.00742
  论文 本期目录 | 过刊浏览 |
表面纳米化对低活化钢的组织及其热稳定性的影响
柳文波1),张弛1),杨志刚1),夏志新2),高古辉1),翁宇庆3)
1)清华大学材料学院先进材料教育部重点实验室, 北京 100084
2)苏州热工研究院有限公司, 苏州 215004
3)中国金属学会, 北京 100711
EFFECT OF SURFACE NANOCRYSTALLIZATION ON MICROSTRUCTURE AND THERMAL STABILITY OF REDUCED ACTIVATION STEEL
LIU Wenbo1), ZHANG Chi1), YANG Zhigang1), XIA Zhixin2), GAO Guhui1), WENG Yuqing3)
1) Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2) Suzhou Nuclear Power Research Institute, Suzhou 215004
3) The Chinese Society for Metals, Beijing 100711
引用本文:

柳文波,张弛,杨志刚,夏志新,高古辉,翁宇庆. 表面纳米化对低活化钢的组织及其热稳定性的影响[J]. 金属学报, 2013, 49(6): 707-716.
LIU Wenbo, ZHANG Chi, YANG Zhigang, XIA Zhixin, GAO Guhui, WENG Yuqing. EFFECT OF SURFACE NANOCRYSTALLIZATION ON MICROSTRUCTURE AND THERMAL STABILITY OF REDUCED ACTIVATION STEEL[J]. Acta Metall Sin, 2013, 49(6): 707-716.

全文: PDF(5836 KB)  
摘要: 

通过表面机械研磨处理(SMAT)在低活化铁素体钢的表面形成了一层纳米晶.TEM和XRD结果显示, SMAT后的表层组织为纳米晶. 550℃的回火实验结果显示,SMAT后的纳米晶具有良好的热稳定性; 回火120 min后的晶粒异常长大,回火240 min后的晶粒比较均匀(约250 nm). SMAT后试样表层碳化物的衍射峰变宽变弱,表明SMAT过程中碳化物被细化, HRTEM观察显示SMAT后的表层组织中存在细小的MC类型碳化物;根据XRD结果, 计算了M23C6MC碳化物的晶格常数分别为1.0631和0.4306 nm.由于测试机理和测量深度不同以及纳米组织的尺寸随着深度变化, 利用XRD和TEM检测的晶粒尺寸不同,而TEM照片能更准确地反应晶粒的实际尺寸.

关键词 表面纳米化热稳定性低活化钢碳化物分解    
Abstract

Nanocrystalline grains in the surface of reduced activation ferrite/martensite(RAFM) steel were produced by means of surface mechanical attrition treatment (SMAT). Analysis results of XRD and TEM showed that grains after SMAT were nanocrystalline. Experiment results after annealing at 550℃ showed that the nanocrystallines were stable. Abnormal grain growth was observed from the TEM images after tempered for 120 min, and the grain sizes became uniform after tempered for 240 min (about 250 nm). The XRD diffraction peaks of carbides became weaker and boarder indicated that carbides in the surface layer became smaller after SMAT, and smaller MC type carbides were found from HRTEM images after SMAT. The lattice parameters of M23C6 and MC were 1.0631 and 0.4306 nm calculated from the XRD results. The differences of grain sizes obtained by XRD and TEM could be attributed to the different testing mechanism, different measuring depths and the depth-dependent nanocrystalline microstructure, and results obtained by TEM were more accurate to reveal the real grain size.

Key wordssurface nanocrystallization    thermal stability    reduced activation steel,    carbide  decomposition
收稿日期: 2012-12-18     
基金资助:

国家重点基础研究发展计划项目2011GB108006和国家自然科学基金项目51071090资助

作者简介: 柳文波, 男, 1984年生, 博士生

[1] Lu K, Lu L.  Acta Metall Sin, 2000; 36: 785

 (卢柯, 卢磊. 金属学报, 2000; 36: 785)
[2] Yong X P, Liu G, Lu J, Lu K.  Acta Metall Sin, 2002; 38: 157
 (雍兴平, 刘刚, 吕坚, 卢柯. 金属学报, 2002; 38: 157)
[3] Valiev R Z, Korznikov A V, Mulyukov R R,  Mater Sci Eng, 1993; A168: 141
[4] Lu K, Lu J.  Mater Sci Eng, 2004; A375-377: 38
[5] Lu K, Lu J.  J Mater Sci Technol, 1999; 15: 193
[6] Wang H L, Wang Z B, Lu K.  Acta Mater, 2012; 60: 1762
[7] Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, Lu K.  Acta Mater, 2002; 50: 4603
[8] Lu S D, Wang Z B, Lu K.  J Mater Sci Technol, 2010; 26: 258
[9] Wang L M, Wang Z B, Lu K.  Acta Mater, 2011; 59: 3710
[10] Li W, Xu W Z, Wang X D, Rong Y H.  J Alloys Compd, 2009; 474: 546
[11] Ivanisenko Y, Lojkowski W, Valiev R Z, Fecht H J.  Acta Mater, 2003; 51: 5555
[12] Nam W J, Bae C M, Oh S J, Kwon S J.  Scr Mater, 2000; 42: 457
[13] Lanfuillaume J, Kapelski G, Baudelet B.  Acta Mater, 1997; 45: 1201
[14] Gavriljuk V G.  Mater Sci Eng, 2003; A345: 81
[15] Zhou L, Liu G, Ma X L, Lu K.  Acta Mater, 2008; 56: 78
[16] Lojkowski W, Djahanbakhsh M, Burkle G, Gierlotka S, Zielinski W, Fecht H J.  Mater Sci Eng, 2001; A303: 197
[17] Jo T S, Lim J H, Kim Y D.  J Nucl Mater, 2010; 406: 360
[18] Huang Q Y, Yu J N, Wan F R, Li J G, Wu Y C.  Chin J Nucl Eng, 2004; 24: 56
 (黄群英, 郁金南, 万发荣, 李建刚, 吴宜灿. 核科学与工程, 2004; 24: 56)
[19] Jones R H, Heinisch H L, McCarthy K A.  J Nucl Mater, 1999; 271--272: 518
[20] Xia Z X, Zhang C, Yang Z G.  Acta Metall Sin, 2011; 47: 713
(夏志新, 张弛, 杨志刚. 金属学报, 2011; 47: 713)
[21] Bai X M, Voter A F, Hoagland R G, Nastasi M, Uberuaga B P.  Science, 2010; 327: 1631
[22] Ackland G.  Science, 2010; 327: 1587
[23] Klug H P, Alexander L E.  X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: Wiley, 1974: 662
[24] Feng G, Shi L J, Lu J, Lu K.  Acta Metall Sin, 2000; 36: 300
(冯淦, 石连捷, 吕坚, 卢柯. 金属学报, 2000; 36: 300)
[25] Schiotz J, Tolla F D, Jacobsen K W.  Nature, 1998; 391: 561
[26] Jeon J B, Lee B J, Chang Y W.  Scr Mater, 2011; 64: 494
[27] Huang F, Tao N R, Lu K.  J Mater Sci Technol, 2011; 27: 1
[28] Gavriljuk V.  Scr Mater, 2002; 46: 175
[29] Ohsaki S, Hono H, Hidaka H, Takaki S.  Scr Mater, 2005; 52: 271
[30] Sauvage X, Quelennec X, Malandain J J, Pareige P.  Scr Mater, 2006; 54: 1099
[31] Liu W B, Zhang C, Xia Z X, Yang Z G, Wang P H, Chen J M.Mater Sci Eng, 2013; A568: 176
[32] Erdos E.  Analysis of High Temperature Materials. London and New York: Applied Science Publishers, 1983: 204
[33] Franck F J, Tambuyser P, Zubani I.  J Mater Sci, 1982; 17: 3057
[34] Song X Y, Zhang J X, Li L M, Yang K Y, Liu G Q.  Acta Mater, 2006; 54: 5541
[35] Salati A, Panjepour M, Aryanpour G.  J Phys Chem Solids, 2011; 72: 104
[36] Waniewska A S, Greneche J M.  Phys Rev, 1997; 56B: 8491
[37] Meng Q, Zhou N, Rong Y, Chen S, Hsu T Y (Xu Z Y).  Acta Mater, 2002; 50: 4563
[39] Pan J S, Tong J M, Tian M B.  Fundamentals of Materials Science. Beijing: Tsinghua University Press,2004: 579
 (潘金生, 仝健民, 田民波. 材料科学基础. 北京: 清华大学出版社, 2004: 579)
[38] Krill C E, Helfen L, Michels D, Natter H, Fitch A,  Phys Rev Lett, 2001; 86: 842
[40] Ungar T, Tichy G, Gubicza J, Hellmig R J.  Powder Diffr, 2005; 20: 366
[41] Ungar T, Gubicza J, Ribarik G, Borbely A.  J Appl Crystallogr, 2001; 34: 298
[42] Zhu Y T, Huang J Y, Gubicza J, Ungar T, Wang Y M, Ma E, Valiev R Z.  J Mater Res,2003; 18: 1908
[43] Malow T R, Koch C C.  Acta Mater, 1997; 45: 2177
[1] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[4] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[5] 王晓波, 王墉哲, 程旭东, 蒋蓉. 大气条件下AlCrON基光谱选择性吸收涂层的热稳定性[J]. 金属学报, 2021, 57(3): 327-339.
[6] 彭艳艳, 余黎明, 刘永长, 马宗青, 刘晨曦, 李冲, 李会军. 650 ℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56(8): 1075-1083.
[7] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[8] 杨建海,张玉祥,葛利玲,程晓,陈家照,高杨. 焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2017, 53(7): 842-850.
[9] 邹建雄,刘波,林黎蔚,任丁,焦国华,鲁远甫,徐可为. MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究[J]. 金属学报, 2017, 53(1): 31-37.
[10] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[11] 刘刚, 李超, 马野, 张瑞君, 刘勇凯, 沙玉辉. 异步轧制硅钢表面纳米结构稳定性与渗硅行为*[J]. 金属学报, 2016, 52(3): 307-312.
[12] 杨建海,张玉祥,葛利玲,陈家照,张鑫. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1413-1422.
[13] 杨滨, 李鑫, 罗文东, 李宇翔. 微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响[J]. 金属学报, 2015, 51(4): 465-472.
[14] 刘刚, 马野, 张瑞君, 王小兰, 沙玉辉, 左良. 异步轧制硅钢的表面纳米化及轧制参数的影响[J]. 金属学报, 2014, 50(9): 1071-1077.
[15] 刘刚,刘金阳,王小兰,王福会,赵骧,左良. 异步轧制纯Ti薄板表面纳米晶的形成[J]. 金属学报, 2013, 49(5): 599-604.