|
|
基于热力学和动力学协同的析出相模拟 |
刘峰1,2( ), 王天乐1 |
1.西北工业大学 凝固技术国家重点实验室 西安 710072 2.西北工业大学 分析与测试中心 西安 710072 |
|
Precipitation Modeling via the Synergy of Thermodynamics and Kinetics |
LIU Feng1,2( ), WANG Tianle1 |
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University ;Xi'an 710072, China 2.Analytical & Testing Center, Northwestern Polytechnical University ;Xi'an 710072, China |
引用本文:
刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
Feng LIU,
Tianle WANG.
Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. Acta Metall Sin, 2021, 57(1): 55-70.
1 |
Liu F, Wang K. Discussions on the correlation between thermodynamics and kinetics during the phase transformations in the TMCP of low-alloy steels [J]. Acta Metall. Sin., 2016, 52: 1326
|
1 |
刘 峰, 王 慷. 低合金钢TMCP中相变热力学/动力学相关性探讨 [J]. 金属学报, 2016, 52: 1326
|
2 |
Wang K, Shang S L, Wang Y, et al. Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study [J]. Acta Mater., 2018, 147: 261
|
3 |
Liu Z K. Ocean of data: Integrating first-principles calculations and CALPHAD modeling with machine learning [J]. J. Phase Equilib. Diffus., 2018, 39: 635
|
4 |
Luo Q, Chen H C, Chen W, et al. Thermodynamic prediction of martensitic transformation temperature in Fe-Ni-C system [J]. Scr. Mater., 2020, 187: 413
|
5 |
Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev., 1964, 136: B864
|
6 |
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140: A1133
|
7 |
de Pablo J J, Jones B, Kovacs C L, et al. The materials genome initiative, the interplay of experiment, theory and computation [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 99
|
8 |
de Pablo J J, Jackson N E, Webb M A, et al. New frontiers for the materials genome initiative [J]. npj Comput. Mater., 2019, 5: 41
|
9 |
Wagner R, Kampmann R, Voorhees P W. Homogeneous second-phase precipitation [A]. Phase Transformations in Materials [M]. New York: Wiley-VCH, 2001
|
10 |
Svoboda J, Turek I, Fischer F D. Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences [J]. Philos. Mag., 2005, 85: 3699
|
11 |
Perez M, Dumont M, Acevedo-Reyes D. Implementation of classical nucleation and growth theories for precipitation [J]. Acta Mater., 2008, 56: 2119
|
12 |
Volmer M, Weber A. Keimbildung in übersӓttigten gebilden [J]. Z. Phys. Chem., 1926, 119: 277
|
13 |
Becker R, Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen [J]. Ann. Phys., 1935, 416: 719
|
14 |
Zeldovich Y B. On the theory of new phase formation: Cavitation [J]. Acta Physicochim., 1943, 18: 1
|
15 |
Russell K C. Phase Transformations [M]. Ohio: American Society for Metals, 1968: 219
|
16 |
Kampmann R, Wagner R. Kinetics of precipitation in metastable binary alloys—Theory and application to Cu-1.9 at % Ti and Ni-14 at % Al [A]. Decomposition of Alloys: The Early Stages [M]. Oxford, U.K.: Pergamon Press, 1984: 91
|
17 |
Zener C. Theory of growth of spherical precipitates from solid solution [J]. J. Appl. Phys., 1949, 20: 950
|
18 |
Perez M. Gibbs-Thomson effects in phase transformations [J]. Scr. Mater., 2005, 52: 709
|
19 |
Voorhees P W. The theory of Ostwald ripening [J]. J. Stat. Phys., 1985, 38: 231
|
20 |
Lifchitz I M, Slyosov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19: 35
|
21 |
Wagner C. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung) [J]. Z. Elektrochem., 1961, 65: 581
|
22 |
Onsager L. Reciprocal relations in irreversible processes. I [J]. Phys. Rev., 1931, 37: 405
|
23 |
Ziegler H. Some extremum principles in irreversible thermodynamics with applications to continuum mechanics [A]. Progress in Solid Mechanics [M]. Amsterdam: North-Holland, 1963: 1
|
24 |
Ziegler H. An Introduction to Thermomechanics [M]. Amsterdam: North-Holland, 1977: 1
|
25 |
Fischer F D, Svoboda J, Petryk H. Thermodynamic extremal principles for irreversible processes in materials science [J]. Acta Mater., 2014, 67: 1
|
26 |
Hackl K, Fischer F D. On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials [J]. Proc. Roy. Soc., 2008, 464A: 117
|
27 |
Fischer F D, Svoboda J. Thermodynamic treatment of diffusive phase transformation (reactive diffusion) [A]. Handbook of Solid State Diffusion [M]. Amsterdam: Elsevier, 2017: 391
|
28 |
Svoboda J, Fischer F D, Fratzl P, et al. Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: I: Theory [J]. Mater. Sci. Eng., 2004, A385: 166
|
29 |
Kozeschnik E, Svoboda J, Fratzl P, et al. Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: II: Numerical solution and application [J]. Mater. Sci. Eng., 2004, A385: 157
|
30 |
Wang K, Zhang L, Liu F. Multi-scale modeling of the complex microstructural evolution in structural phase transformations [J]. Acta Mater., 2019, 162: 78
|
31 |
Liu Z K. First-principles calculations and CALPHAD modeling of thermodynamics [J]. J. Phase Equilib. Diffus., 2009, 30: 517
|
32 |
Saunders N, Miodownik A P. CALPHAD: Calculation of Phase Diagrams: A Comprehensive Guide [M]. Berlin: Pergamon, 1998: 1
|
33 |
Kaufman L, Ågren J. CALPHAD, first and second generation—Birth of the materials genome [J]. Scr. Mater., 2014, 70: 3
|
34 |
Olson G B, Kuehmann C J. Materials genomics: From CALPHAD to flight [J]. Scr. Mater., 2014, 70: 25
|
35 |
Andersson J O, Ågren J. Models for numerical treatment of multicomponent diffusion in simple phases [J]. J. App. Phys., 1992, 72: 1350
|
36 |
Spencer P J. A brief history of CALPHAD [J]. Calphad, 2008, 32: 1
|
37 |
Zhang L J, Chen Q. CALPHAD—Type modeling of diffusion kinetics in multicomponent alloys [A]. Handbook of Solid State Diffusion [M]. Amsterdam: Elsevier, 2017: 321
|
38 |
Thomson R C. Characterization of carbides in steels using atom probe field-ion microscopy [J]. Mater. Charact., 2000, 44: 219
|
39 |
Schneider A, Inden G. Simulation of the kinetics of precipitation reactions in ferritic steels [J]. Acta Mater., 2005, 53: 519
|
40 |
Hu X B, Zhang M, Wu X C, et al. Simulations of coarsening behavior for M23C6 carbides in AISI H13 steel [J]. J. Mater. Sci. Technol., 2006, 22: 153
|
41 |
Bjärbo A, Hättestrand M. Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel—An experimental and theoretical study [J]. Metall. Mater. Trans., 2001, 32A: 19
|
42 |
Bratberg J, Ågren J, Frisk K. Diffusion simulations of MC and M7C3 carbide coarsening in bcc and fcc matrix utilising new thermodynamic and kinetic description [J]. Mater. Sci. Technol., 2008, 24: 695
|
43 |
Sanhueza J P, Rojas D, Prat O, et al. Precipitation kinetics in a 10.5%Cr heat resistant steel: Experimental results and simulation by TC-PRISMA/DICTRA [J]. Mater. Chem. Phys., 2017, 200: 342
|
44 |
Li Y, Holmedal B, Li H X, et al. Precipitation and strengthening modeling for disk-shaped particles in aluminum alloys: Size distribution considered [J]. Materialia, 2018, 4: 431
|
45 |
Langer J S, Schwartz A J. Kinetics of nucleation in near-critical fluids [J]. Phys. Rev., 1980, 21A: 948
|
46 |
Zhao D D, Xu Y J, Gouttebroze S, et al. Modelling the age-hardening precipitation by a revised Langer and Schwartz approach with log-normal size distribution [J]. Metall. Mater. Trans., 2020, 51A: 4838
|
47 |
Kampmann R, Eckerlebe H, Wagner R. Precipitation kinetics in metastable solid solutions—Theoretical considerations and application to Cu-Ti alloys [J]. Mater. Res. Soc. Symp. Proc., 1987, 57: 525
|
48 |
Robson J D. Modelling the evolution of particle size distribution during nucleation, growth and coarsening [J]. Mater. Sci. Technol., 2004, 20: 441
|
49 |
Myhr O R, Ø Grong. Modelling of non-isothermal transformations in alloys containing a particle distribution [J]. Acta Mater., 2000, 48: 1605
|
50 |
Nicolas M, Deschamps A. Characterisation and modelling of precipitate evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments [J]. Acta Mater., 2003, 51: 6077
|
51 |
Du Q, Poole W J, Wells M A. A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys [J]. Acta Mater., 2012, 60: 3830
|
52 |
Hasting H S, Frøseth A G, Andersen S J, et al. Composition of β″ precipitates in Al-Mg-Si alloys by atom probe tomography and first principles calculations [J]. J. Appl. Phys., 2009, 106: 123527
|
53 |
Biswas A, Siegel D J, Wolverton C, et al. Precipitates in Al-Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation [J]. Acta Mater., 2011, 59: 6187
|
54 |
Ohmori Y, Tamura I. Epsilon carbide precipitation during tempering of plain carbon martensite [J]. Metall. Trans., 1992, 23A: 2737
|
55 |
Holmedal B, Osmundsen E, Du Q. Precipitation of non-spherical particles in aluminum alloys part I: Generalization of the Kampmann-Wagner numerical model [J]. Metall. Mater. Trans., 2016, 47A: 581
|
56 |
Chen Q, Wu K S, Sterner G, et al. Modeling precipitation kinetics during heat treatment with calphad-based tools [J]. J. Mater. Eng. Perform., 2014, 23: 4193
|
57 |
Rojhirunsakool T, Meher S, Hwang J Y, et al. Influence of composition on monomodal versus multimodal γ′ precipitation in Ni-Al-Cr alloys [J]. J. Mater. Sci., 2013, 48: 825
|
58 |
Wang T L, Du J L, Liu F. Modeling competitive precipitations among iron carbides during low-temperature tempering of martensitic carbon steel [J]. Materialia, 2020, 12: 100800
|
59 |
Robson J D. Modelling the overlap of nucleation, growth and coarsening during precipitation [J]. Acta Mater., 2004, 52: 4669
|
60 |
Popov V V, Gorbachev I I, Pasynkov A Y. Simulation of precipitates evolution in multiphase multicomponent systems with consideration of nucleation [J]. Philos. Mag., 2016, 96: 3632
|
61 |
Popov V V, Gorbachev I. Simulation of the evolution of precipitates in multicomponent alloys [J]. Phys. Met. Metallogr., 2003, 95: 417
|
62 |
Popov V V, Gorbachev I I, Alyabieva J A. Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei [J]. Philos. Mag., 2005, 85: 2449
|
63 |
Kozeschnik E, Svoboda J, Fischer F D. Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems [J]. Calphad, 2004, 28: 379
|
64 |
Cerjak H. Mathematical Modelling of Weld Phenomena 5 [M]. London: CRC Press, 2001: 349
|
65 |
Leitner H, Bischof M, Clemens H, et al. Precipitation behaviour of a complex steel [J]. Adv. Eng. Mater., 2006, 8: 1066
|
66 |
Shim J H, Povoden-Karadeniz E, Kozeschnik E, et al. Modeling precipitation thermodynamics and kinetics in type 316 austenitic stainless steels with varying composition as an initial step toward predicting phase stability during irradiation [J]. J. Nucl. Mater., 2015, 462: 250
|
67 |
Kim M Y, Chu D J, Lee Y S, et al. Mechanical property change and precipitate evolution during long-term aging of 1.25Cr-0.5Mo steel [J]. Mater. Sci. Eng., 2020, A789: 139663
|
68 |
McDowell D L. Microstructure-sensitive computational structure-property relations in materials design [A]. Computational Materials System Design [M]. Cham: Springer International Publishing, 2018: 1
|
69 |
Chen W. High-throughput computing for accelerated materials discovery [A]. Computational Materials System Design [M]. Cham: Springer International Publishing, 2018: 169
|
70 |
Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond [J]. J. Comput. Chem., 2008, 29: 2044
|
71 |
Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials [J]. J. Phys.: Condens. Matter, 2009, 21: 395502
|
72 |
Gonze X, Amadon B, Anglade P M, et al. ABINIT: First-principles approach to material and nanosystem properties [J]. Comput. Phys. Commun., 2009, 180: 2582
|
73 |
Fang C M, Van Huis M A, Zandbergen H W. Structure and stability of Fe2C phases from density-functional theory calculations [J]. Scr. Mater., 2010, 63: 418
|
74 |
Barrow A T W, Kang J H, Rivera-Díaz-del-Castillo P E J. The ε→η→θ transition in 100Cr6 and its effect on mechanical properties [J]. Acta Mater., 2012, 60: 2805
|
75 |
Medvedeva N I, Van Aken D C, Medvedeva J E. Stability of binary and ternary M23C6 carbides from first principles [J]. Comput. Mater. Sci., 2015, 96: 159
|
76 |
Konyaeva M A, Medvedeva N I. Electronic structure, magnetic properties, and stability of the binary and ternary carbides (Fe, Cr)3C and (Fe, Cr)7C3 [J]. Phys. Solid State, 2009, 51: 2084
|
77 |
Ande C K, Sluiter M H F. First-principles prediction of partitioning of alloying elements between cementite and ferrite [J]. Acta Mater., 2010, 58: 6276
|
78 |
Liu Y Z, Jiang Y H, Xing J D, et al. Mechanical properties and electronic structures of M23C6 (M=Fe, Cr, Mn)-type multicomponent carbides [J]. J. Alloys Compd., 2015, 648: 874
|
79 |
Sanchez J M. Cluster expansions and the configurational energy of alloys [J]. Phys. Rev., 1993, 48B: 14013
|
80 |
van de Walle A, Asta M. Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic properties and phase diagrams [J]. Modell. Simul. Mater. Sci. Eng., 2002, 10: 521
|
81 |
Wang Y, Hector L G, Zhang H, et al. Thermodynamics of the Ce γ-α transition: Density-functional study [J]. Phys. Rev., 2008, 78B: 104113
|
82 |
Wang Y, Hector L G, Zhang H, et al. A thermodynamic framework for a system with itinerant-electron magnetism [J]. J. Phys.: Condens. Matter, 2009, 21: 326003
|
83 |
Fang C M, Sluiter M H F, van Huis M A, et al. Origin of predominance of cementite among iron carbides in steel at elevated temperature [J]. Phys. Rev. Lett., 2010, 105: 055503
|
84 |
Kaplan B, Blomqvist A, Århammar C, et al. Structural determination of (Cr, Co)7C3[A]. 18th Plansee Seminar [C]. Reutte, Austria, 2013: 1
|
85 |
Chen L Q. Phase-field models for microstructure evolution [J]. Annu. Rev. Mater. Res., 2002, 32: 113
|
86 |
Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
|
87 |
Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
|
88 |
Wang Y Z, Li J. Phase field modeling of defects and deformation [J]. Acta Mater., 2010, 58: 1212
|
89 |
Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling of microstructure evolution [J]. Calphad, 2008, 32: 268
|
90 |
Steinbach I. Phase-field models in materials science [J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 073001
|
91 |
Xiong H, Huang Z H, Wu Z Y, et al. A generalized computational interface for combined thermodynamic and kinetic modeling [J]. Calphad, 2011, 35: 391
|
92 |
Philippe T, Erdeniz D, Dunand D C, et al. A phase-field study of the aluminizing of nickel [J]. Philos. Mag., 2015, 95: 935
|
93 |
Vaithyanathan V, Wolverton C, Chen L Q. Multiscale modeling of θ′ precipitation in Al-Cu binary alloys [J]. Acta Mater., 2004, 52: 2973
|
94 |
Vaithyanathan V, Wolverton C, Chen L Q. Multiscale modeling of precipitate microstructure evolution [J]. Phys. Rev. Lett., 2002, 88: 125503
|
95 |
Khachaturyan A G. Theory of Structural Transformations in Solids [M]. New York: Wiley, 1983: 1
|
96 |
Kim K, Roy A, Gururajan M P, et al. First-principles/phase-field modeling of θ′ precipitation in Al-Cu alloys [J]. Acta Mater., 2017, 140: 344
|
97 |
Teichert G H, Natarajan A R, Van der Ven A, et al. Machine learning materials physics: Integrable deep neural networks enable scale bridging by learning free energy functions [J]. Comput. Methods Appl. Mech. Eng., 2019, 353: 201
|
98 |
Teichert G H, Natarajan A R, Van der Ven A, et al. Scale bridging materials physics: Active learning workflows and integrable deep neural networks for free energy function representations in alloys [J]. Comput. Methods Appl. Mech. Eng., 2020, 371: 113281
|
99 |
Zhang L, Chen L Q, Du Q. Diffuse-interface description of strain-dominated morphology of critical nuclei in phase transformations [J]. Acta Mater., 2008, 56: 3568
|
100 |
Boussinot G, Finel A, Le Bouar Y. Phase-field modeling of bimodal microstructures in nickel-based superalloys [J]. Acta Mater., 2009, 57: 921
|
101 |
Simmons J P, Shen C, Wang Y. Phase field modeling of simultaneous nucleation and growth by explicitly incorporating nucleation events [J]. Scr. Mater., 2000, 43: 935
|
102 |
Vaithyanathan V, Chen L Q. Coarsening kinetics of δ′-Al3Li precipitates: Phase-field simulation in 2D and 3D [J]. Scr. Mater., 2000, 42: 967
|
103 |
Li Y S, Yu Y Z, Cheng X L, et al. Phase field simulation of precipitates morphology with dislocations under applied stress [J]. Mater. Sci. Eng., 2011, A528: 8628
|
104 |
Du J L, Zhang A, Zhang Y B, et al. Atomistic determination on stability, cluster and microstructures in terms of crystallographic and thermo-kinetic integration of Al-Mg-Si alloys [J]. Mater. Today Commun., 2020, 24: 101220
|
105 |
Huang L K, Lin W T, Zhang Y B, et al. Generalized stability criterion for exploiting optimized mechanical properties by a general correlation between phase transformations and plastic deformations [J]. Acta Mater., 2020, 201: 167
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|