|
|
Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶 |
张阳, 邵建波, 陈韬, 刘楚明, 陈志永( ) |
中南大学材料科学与工程学院 长沙 410083 |
|
Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging |
ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong( ) |
School of Materials Science and Engineering, Central South University, Changsha 410083, China |
引用本文:
张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
Yang ZHANG,
Jianbo SHAO,
Tao CHEN,
Chuming LIU,
Zhiyong CHEN.
Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. Acta Metall Sin, 2020, 56(5): 723-735.
1 |
Ding W J. Magnesium Alloy Science and Technology [M]. Beijing: Science Press, 2007: 24
|
1 |
丁文江. 镁合金科学与技术 [M]. 北京: 科学出版社, 2007: 24
|
2 |
Dahle A K, Lee Y C, Nave M D, et al. Development of the as-cast microstructure in magnesium-aluminum alloys [J]. J. Light Met., 2001, 1: 61
|
3 |
Zhang J H, Leng Z, Liu S J, et al. Microstructure and mechanical properties of Mg-Gd-Dy-Zn alloy with long period stacking ordered structure or stacking faults [J]. J. Alloys Compd., 2011, 509: 7717
|
4 |
Polmear I J. Magnesium alloys and applications [J]. Mater. Sci. Technol., 1994, 10: 1
|
5 |
Zeng R C, Ke W, Xu Y B, et al. Recent development and application of magnesium alloys [J]. Acta Metall. Sin., 2001, 37: 673
|
5 |
曾荣昌, 柯 伟, 徐永波等. Mg合金的最新发展及应用前景 [J]. 金属学报, 2001, 37: 673
|
6 |
Miura H, Maruoka T, Yang X, et al. Microstructure and mechanical properties of multi-directionally forged Mg-Al-Zn alloy [J]. Scr. Mater., 2012, 66: 49
|
7 |
Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa [J]. Mater. Trans., 2001, 42: 1172
|
8 |
Li Y X, Zhu G Z, Qiu D, et al. The intrinsic effect of long period stacking ordered phases on mechanical properties in Mg-RE based alloys [J]. J. Alloys Compd., 2016, 660: 252
|
9 |
Zhu J, Chen J B, Liu T, et al. High strength Mg94Zn2.4Y3.6 alloy with long period stacking ordered structure prepared by near-rapid solidification technology [J]. Mater. Sci. Eng., 2017, A679: 476
|
10 |
Shao J B, Chen Z Y, Chen T, et al. Texture evolution, deformation mechanism and mechanical properties of the hot rolled Mg-Gd-Y-Zn-Zr alloy containing LPSO phase [J]. Mater. Sci. Eng., 2018, A731: 479
|
11 |
Xie G M, Ma Z Y, Xue P, et al. Effects of tool rotation rates on superplastic deformation behavior of friction stir processed Mg-Zn-Y-Zr alloy [J]. Acta Metall. Sin., 2018, 54: 1745
|
11 |
谢广明, 马宗义, 薛 鹏等. 工具转速对搅拌摩擦加工Mg-Zn-Y-Zr耐热镁合金超塑性行为的影响 [J]. 金属学报, 2018, 54: 1745
|
12 |
Li K, Chen Z Y, Chen T, et al. Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Zn alloy with LPSO phases [J]. J. Alloys Compd., 2019, 792: 894
doi: 10.1016/j.jallcom.2019.04.036
|
13 |
Matsuda M, Ando S, Nishida M, et al. Dislocation structure in rapidly solidified Mg97Zn1Y2 alloy with long period stacking order phase [J]. Mater. Trans., 2005, 46: 361
|
14 |
Matsuda M, Ii S, Kawamura Y, et al. Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg97Zn1Y2 alloy [J]. Mater. Sci. Eng., 2004, A386: 447
|
15 |
Yamasaki M, Hagihara K, Inoue S I, et al. Crystallographic classification of kink bands in an extruded Mg-Zn-Y alloy using intragranular misorientation axis analysis [J]. Acta Mater., 2013, 61: 2065
|
16 |
Shao X H, Yang Z Q, Ma X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure [J]. Acta Mater., 2010, 58: 4760
|
17 |
Zhou X J, Liu C M, Gao Y H, et al. Evolution of LPSO phases and their effect on dynamic recrystallization in a Mg-Gd-Y-Zn-Zr alloy [J]. Metall. Mater. Trans., 2017, 48A: 3060
doi: 10.3390/ma11112092
pmid: 30366432
|
18 |
Zhang D X, Tan Z, Huo Q H, et al. Dynamic recrystallization behaviors of Mg-Gd-Y-Zn-Zr alloy with different morphologies and distributions of LPSO phases [J]. Mater. Sci. Eng., 2018, A715: 389
|
19 |
Miura H, Yu G, Yang X. Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties[J]. Mater. Sci. Eng., 2011, A528: 6981
|
20 |
Wang B Z, Liu C M, Gao Y H, et al. Microstructure evolution and mechanical properties of Mg-Gd-Y-Ag-Zr alloy fabricated by multidirectional forging and ageing treatment [J]. Mater. Sci. Eng., 2017, A702: 22
|
21 |
Wu Y Z, Yan H G, Chen J H, et al. Microstructure and mechanical properties of ZK21 magnesium alloy fabricated by multiple forging at different strain rates [J]. Mater. Sci. Eng., 2012, A556: 164
|
22 |
Mehrabi A, Mahmudi R, Miura H. Superplasticity in a multi-directionally forged Mg-Li-Zn alloy [J]. Mater. Sci. Eng., 2019, A765: 138274
|
23 |
Deng L P, Cui K X, Wang B S, et al. Microstructure and texture evolution of AZ31 Mg alloy processed by multi-pass compressing under room temperature [J]. Acta Metall. Sin., 2019, 55: 976
|
23 |
邓丽萍, 崔凯旋, 汪炳叔等. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究 [J]. 金属学报, 2019, 55: 976
|
24 |
Matsuda M, Ii S, Kawamura Y, et al. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy [J]. Mater. Sci. Eng., 2005, A393: 269
|
25 |
Yamasaki M, Sasaki M, Nishijima M, et al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature [J]. Acta Mater., 2007, 55: 6798
doi: 10.1016/j.actamat.2007.08.033
|
26 |
Xiao H C, Jiang S N, Tang B, et al. Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Y-Zr alloy [J]. Mater. Sci. Eng., 2015, A628: 311
|
27 |
Guan D K, Rainforth W M, Ma L, et al. Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy [J]. Acta Mater., 2017, 126: 132
|
28 |
Liu W, Zhang J S, Wei L Y, et al. Extensive dynamic recrystallized grains at kink boundary of 14H LPSO phase in extruded Mg92Gd3Zn1Li4 alloy [J]. Mater. Sci. Eng., 2017, A681: 97
|
29 |
Wu J, Ikeda K I, Shi Q, et al. Kink boundaries and their role in dynamic recrystallisation of a Mg-Zn-Y alloy [J]. Mater. Charact., 2019, 148: 233
|
30 |
Yu Y N. Metallurgical Principle [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2013: 931
|
30 |
余永宁. 金属学原理 [M]. 第2版. 北京: 冶金工业出版社, 2013: 931
|
31 |
Chapuis A, Xin Y C, Zhou X J, et al. {101¯2} twin variants selection mechanisms during twinning, re-twinning and detwinning [J]. Mater. Sci. Eng., 2014 ,A612: 431
|
32 |
Stanford N, Barnett M R. Effect of particles on the formation of deformation twins in a magnesium-based alloy [J]. Mater. Sci. Eng., 2009, A516: 226
|
33 |
Hong S G, Park S H, Lee C S. Role of {101¯2} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy [J]. Acta Mater., 2010, 58: 5873
|
34 |
Guo C F, Xin R L, Zheng X, et al. Influence of observation plane on twin variant identification in magnesium via trace and misorientation analysis [J]. Mater. Sci. Eng., 2014, A618: 558
|
35 |
Barnett M R. A Taylor model based description of the proof stress of magnesium AZ31 during hot working [J]. Metall. Mater. Trans., 2003, 34A: 1799
|
36 |
Chun Y B, Davies C H J. Investigation of prism <a> slip in warm-rolled AZ31 alloy [J]. Metall. Mater. Trans., 2011, 42A: 4113
|
37 |
Wang L, Sabisch J, Lilleodden E T. Kink formation and concomitant twin nucleation in Mg-Y [J]. Scr. Mater., 2016, 111: 68
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|