金属学报, 2020, 56(5): 723-735 DOI: 10.11900/0412.1961.2019.00292

Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶

张阳, 邵建波, 陈韬, 刘楚明, 陈志永,

中南大学材料科学与工程学院 长沙 410083

Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging

ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong,

School of Materials Science and Engineering, Central South University, Changsha 410083, China

通讯作者: 陈志永,czysh@netease.com,主要从事镁合金微观组织与力学性能的研究

收稿日期: 2019-09-05   修回日期: 2019-10-11   网络出版日期: 2020-04-23

基金资助: 国家自然科学基金项目.  51874367
国家自然科学基金项目.  51574291

Corresponding authors: CHEN Zhiyong, professor, Tel: 13974926019, E-mail:czysh@netease.com

Received: 2019-09-05   Revised: 2019-10-11   Online: 2020-04-23

Fund supported: National Natural Science Foundation of China.  51874367
National Natural Science Foundation of China.  51574291

作者简介 About authors

张阳,女,1995年生,硕士

摘要

以含长周期堆垛有序(LPSO)相的Mg-5.6Gd-0.8Zn (质量分数,%)合金为研究对象,分析了合金多向锻造过程中的变形机制、动态再结晶及显微组织演变。结果表明:变形初期,{101¯2}拉伸孪生仅在部分晶粒中激发;随锻造方向的改变,不同晶体取向的晶粒能够激发孪生变形,孪生体积分数增加,孪生变体选择符合Schmid定律。孪生受阻碍的晶粒通过滑移及扭折协调变形,扭折带类型主要为转轴分布在<101¯0>晶向的基面扭折。多向锻造过程中,晶界处优先发生动态再结晶;随着变形量的增加,晶界处再结晶体积分数增大,晶内孪晶与扭折界面诱发再结晶,孪晶逐渐演变为条带状细晶组织。在孪晶、扭折带切割晶粒,晶界再结晶,孪晶、扭折带诱发再结晶多重机制的共同作用下,原始粗晶组织得到了显著细化。

关键词: 镁合金 ; LPSO相 ; 多向锻造 ; 变形机制 ; 动态再结晶

Abstract

Multi-directional forging (MDF) is an effective way to fabricate wrought magnesium alloy with ultrafine grains and random texture. Therefore, microstructure evolution and dynamic recrystallization (DRX) of magnesium alloys during MDF process have been widely investigated. Mg-Zn-RE alloys containing long-period stacking ordered (LPSO) phase have received considerable attention owing to their excellent mechanical properties. In addition, LPSO phase has great effects on the deformation mechanism and DRX behavior. Still, limited comprehensive studies can be found in the literature dealing with the microstructure evolution, deformation mechanism and DRX of magnesium alloys containing LPSO phase in MDF deformation. In this work, MDF was applied to a Mg-5.6Gd-0.8Zn (mass fraction, %) alloy containing LPSO phase. Microstructure characteristics, deformation mechanism and DRX behavior of the material in different passes were examined. Results show that there are several stages of the microstructure evolution. Twinning was activated only in a small part of grains in the early stage of deformation. As the forging direction changes, the number of twinned grains and the volume fraction of DRX grains increased. A mixed structure with coarse deformed grain and DRX grains was sustained till last forging pass, and the average size of DRX grains is about 4 μm with a random orientation. {101¯2} tensile twinning is the main deformation mechanism and the selection of twin variants was dominated by the Schmid law. Change in forging direction is beneficial to twinning stimulation in grains of different orientations. Kink and slipping deformation could effectively accommodate the plastic strain where the operation of twinning was hindered. Kink deformation resulted in lattice rotation predominately about the <101¯0> axis. DRX grains nucleated at different places during the forging process. Not only the grain boundaries and the twinned region, but also kink boundaries can induce the nucleation of DRX grains. Eventually, the twinned regions were transformed to a strip-like recrystallization structure. Under the combined influence of twinning and kinking, as well as DRX induced by twins, kink bands and grain boundaries, the initial coarse grains were significantly refined.

Keywords: magnesium alloy ; LPSO phase ; multi-directional forging ; deformation mechanism ; dynamic recrystallization

PDF (5277KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶. 金属学报[J], 2020, 56(5): 723-735 DOI:10.11900/0412.1961.2019.00292

ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging. Acta Metallurgica Sinica[J], 2020, 56(5): 723-735 DOI:10.11900/0412.1961.2019.00292

Mg及镁合金作为最轻的金属结构材料,密度仅为1.74 g/cm3,是钢的23%,Al的64%,具有比强度高、比刚度高、阻尼性能好等优点,在航空航天、民用运输及电子产品等领域具有广阔的应用前景[1,2,3]。然而,与传统的钢铁材料、铝合金相比,镁合金室温成形性差、强度低、耐蚀性较差等缺点严重限制了镁合金在工业上的应用[4,5]。大量不同的实验方法被用于提高镁合金的综合性能,其中添加稀土元素和制备细晶是具有革新性的方法[6]。2001年,Kawamura等[7]通过粉末冶金法制备的含长周期堆垛有序结构(LPSO)相的Mg-Zn-Y合金室温屈服强度超过600 MPa,自此,含LPSO相镁合金的热变形行为开始受到研究者的广泛关注[8,9,10,11,12]

近年来,众多研究[13,14,15,16,17,18]表明LPSO相的存在对滑移、孪生、扭折及动态再结晶均存在一定影响。Matsuda等[13]研究发现,LPSO相的存在提升了基面位错启动的临界分切应力(CRSS),抑制了基面滑移的启动,促进了非基面滑移的激活,基面滑移的抑制以及非基面滑移的启动提高了合金的变形抗力和延伸率。同时,还发现在快速凝固Mg-Zn-Y合金中密集分布的LPSO相显著抑制了{101¯2}孪晶的长大,{101¯2}孪晶仅能沿LPSO相边缘生长[14]。随着LPSO相的引入,扭折变形成为稀土镁合金中一种常见的变形机制[15]。Shao等[16]的研究表明,LPSO相产生的扭折带可通过限制微裂纹传播来降低合金断裂可能性。此外,LPSO相对镁合金动态再结晶行为存在很大影响:与传统商用AZ/ZK镁合金相比,含LPSO相镁合金热变形中动态再结晶程度往往更低,Zhou等[17]和Zhang等[18]认为这是由于晶内层片状LPSO相对位错滑移和动态再结晶的晶界迁移具有阻碍作用造成的。目前,对Mg-Zn-RE合金的研究主要集中在稀土元素对LPSO相结构和对合金力学性能的影响上,镁合金热变形过程中LPSO相对变形机制的影响作用仍待进一步研究。因此,探讨含LPSO相镁合金热变形过程中的变形机制、动态再结晶行为及组织结构的演变规律有着重要科学意义。

在众多镁合金大塑性变形方法中,多向锻造工艺作为一种重要加工方法,被广泛应用于超细晶镁合金的制备[19]。恒温多向锻造以及降温多向锻造后的再结晶晶粒尺寸在0.3~0.8 μm[20,21],能够将晶粒细化至微米级别。除了对晶粒细化的显著功效外,多向锻造不断变化的载荷方向及道次变形量等因素也会影响合金的变形机制和显微组织演变。Mehrabi等[22]发现经8道次多向锻造后,Mg-Li-Zn合金获得更高比例的大角度晶界和更为均匀的组织结构;邓丽萍等[23]的研究表明,多向锻造的道次变形量会影响孪晶的激活量和孪晶片层的形貌,从而对显微组织及织构调控产生影响。

综上可知,LPSO相的存在和多向锻造均会对合金变形机制及显微组织演变产生影响。因此,本工作通过热处理工艺制备含有LPSO相的Mg-5.6Gd-0.8Zn (质量分数,%,下同)合金,研究多向锻造过程中合金的孪生、扭折、动态再结晶行为和显微组织演变规律,为含LPSO相镁合金微观组织及力学性能调控提供参考。

1 实验方法

1.1 合金制备及热处理制度

实验通过半连续铸造方法制备了Mg-5.6Gd-0.8Zn合金,原材料为:纯Mg (99.99%)、纯Zn (99.9%)及Mg-30%Gd中间合金。铸锭截面尺寸为直径120 mm。利用线切割工艺从铸锭中切取尺寸为40 mm×40 mm×40 mm的正方体样品,对样品进行515 ℃、40 h的均匀化及水冷处理后,再进行420 ℃、12 h的退火处理及水冷处理,最终获得析出大量层片状LPSO相的Mg-5.6Gd-0.8Zn退火态合金。

1.2 多向锻造工艺

多向锻造在3150 kN的YA32-315压力机上进行,锻造温度450 ℃。试样变形前先在锻造温度(450 ℃)下进行0.5 h的预热,预热后随即进行1、2、3和6道次的多向锻造,每道次变形量为15%。多向锻造流程如图1a所示,载荷加载面按照A→B→C→A…的顺序循环进行,各道次锻造完成后直接进行水冷处理以保留热变形组织。

图1

图1   多向锻造流程及微观组织观测取样位置示意图

Fig.1   Schematics of multi-directional forging (a) and the position of the sample for microstructure examination (b)


1.3 显微组织表征

采用4XC-2金相显微镜(OM)、配有电子背散射衍射(EBSD)附件的Nanolab 600i型扫描电镜(SEM)和Titan G2 60-300型扫描透射电镜(STEM),对退火态合金及各锻造样品芯部的显微组织特征进行观察与分析,如图1b所示,各样品观察面平行于最后道次锻压方向。OM及SEM试样的腐蚀剂配方为2.1 g苦味酸+5 mL冰醋酸+5 mL蒸馏水+35 mL无水乙醇;EBSD试样由机械抛光+电解抛光方法制备,电解液成分为4%高氯酸乙醇溶液;TEM样品由电解双喷法制备,双喷液成分为4%高氯酸乙醇溶液。

2 结果与讨论

2.1 铸态、热处理态合金的显微组织

图2为Mg-5.6Gd-0.8Zn合金热处理过程中的微观组织演变。如图2a所示,铸态合金由α-Mg基体和大量网状分布的共晶化合物组成,合金内部存在严重的成分偏析。经过515 ℃、40 h的均匀化热处理后,铸态合金中的网状共晶相几乎完全回溶,如图2b所示。420 ℃下退火12 h后,合金晶粒尺寸表现出不均匀性,晶粒尺寸分布从150到800 μm不等,如图2c所示。此外,晶粒内部析出高密度的层片状第二相,如图2d中箭头所示,且该第二相在同一晶粒内部互相平行。

图2

图2   铸态、均匀化态及退火态Mg-5.6Gd-0.8Zn合金的SEM像

Fig.2   SEM images of as-cast (a), homogenized (b) and annealed (c, d) Mg-5.6Gd-0.8Zn alloy before multi-directional forging (The lamellar second phases are indicated by black arrows in Fig.2d, LPSO—long-period stacking ordered)


为进一步明确热处理后层片状第二相的形貌、尺寸及类型,对合金进行TEM观察。420 ℃下12 h退火态合金STEM像及选区电子衍射(SAED)花样如图3a所示,Mg基体透射斑与(0002)斑点之间出现了13个额外斑点,表明该层片状第二相为14H类型的LPSO相[24]。LPSO相在基体内分布并不均匀,尺寸上也存在一定差异。图3b为LPSO相局部放大图,其中亮白色条纹位置为Zn与Gd元素,灰色位置为Mg基体,两者间隔分布,符合Mg-5.6Gd-0.8Zn合金中LPSO相的堆垛特征[25]

图3

图3   退火态合金长周期堆垛结构(LPSO)相的STEM像

Fig.3   STEM image and selected area electron diffraction (SAED) pattern (a) and magnification of the LPSO phase as marked in Fig.3a (b) (Beam direction is <112¯0>)


2.2 合金锻造过程中的显微组织、变形机制及动态再结晶

合金多向锻造过程中的显微组织演变如图4所示,其中图4b、d、f、h分别为图4a、c、e、g中矩形区域的放大图。1道次变形后,部分晶粒内部出现多个变体同时激发的孪生现象,如图4b中箭头所示。并且单个晶粒内孪晶片层厚度较薄,粗大的孪晶为多个孪晶粗化合并导致。一方面,单道次变形量较小,孪晶厚度较小;另一方面,晶内LPSO相对孪晶长大也存在一定的阻碍作用[14]。由于铸态合金中晶体取向较为随机,并且孪生的激发极大地依赖于晶体取向,因此仅有部分晶粒内发生了孪生变形。此外,金相组织中未观察到明显的动态再结晶行为。2、3道次变形后,发生孪生的晶粒数目明显增加,由于载荷方向发生变化,原本不利于孪生的晶粒可能在后续变形中激发孪生,从而导致孪生体积分数显著提高(如图4c与e所示)。大量交错或平行的孪晶切割原始粗晶,晶粒细化程度提高。并且,粗晶晶界及内部能够观察到再结晶组织,晶内再结晶组织呈链状或条状的分布特征,如图4f所示。6道次变形后,晶粒内未观察到低道次变形显微组织中的条状孪晶,而是出现大量由再结晶细晶构成的条带状组织,如图4h所示。并且该条带状细晶组织与低道次变形后平行或交叉的孪晶形貌特征极为相似,可以推断孪晶片层在后续变形过程中发生再结晶并逐渐演化为再结晶条带状组织。Xiao等[26]的研究中也报道了孪晶诱发再结晶并形成再结晶条带状组织的现象,与本工作的实验结果相符。

图4

图4   退火态合金锻后各道次显微组织的OM像

Fig.4   OM images (a, c, e, g) and the corresponding magnifications of boxes (b, d, f, h) of annealed alloy after multi-directional forging of 1-pass (a, b), 2-pass (c, d), 3-pass (e, f) and 6-pass (g, h) (DRX—dynamic recrystallization)


为进一步研究合金锻造过程中孪晶诱发再结晶行为及演变过程,对不同锻造道次变形后孪晶及再结晶晶粒形貌特征进行金相显微观察,结果如图5所示。1道次变形后,孪晶条带平直,内部未观察到明显的再结晶晶粒,如图5a所示。2道次变形后,部分孪晶演变为再结晶细晶组织,如图5b中的箭头所示,而剩余的孪晶在后续应力与温度作用下也极有可能演变为再结晶组织。因此,6道次变形后,能够观察到大量的条带状动态再结晶组织,孪晶几乎完全被动态再结晶晶粒占据,如图5c所示。Guan等[27]研究发现,孪晶形成后其内部基体在后续变形过程中的滑移是导致孪晶诱发再结晶的主要原因:一般而言,孪生变形后,孪晶基体处于滑移变形的硬取向,特别是基面滑移,而多向锻造过程中载荷方向不断变化可能利于孪晶内基体的滑移变形,因此能够促进孪晶诱发再结晶并形成条带状细晶组织。除了孪晶诱发再结晶,扭折带诱发再结晶也是含LPSO相镁合金中一种重要的再结晶机制,扭折界面的位错堆积和应力集中均有利于动态再结晶的形核与长大[28]。因此,再结晶晶粒会沿扭折界面形核并长大,如图5d中箭头所示。但并非所有的扭折界面均能诱发再结晶。Wu等[29]指出,扭折界面诱发再结晶与扭折界面取向差密切相关,大角度扭折界面的高应变储能更容易促进再结晶形核。

图5

图5   多向锻造过程中孪生及扭折诱发再结晶

Fig.5   Twin-induced and kink-induced DRX

(a) twinning in 1-pass (b) twinning and DRX in 2-pass

(c) strip-like DRX structure in 6-pass (d) kink-induced DRX in 6-pass


为研究合金晶界处的动态再结晶行为,对各锻造态合金晶界处的细晶组织进行SEM表征,结果如图6所示。1道次变形后,晶界处发生动态再结晶,生成细小的再结晶晶粒,晶粒平均尺寸约为4 μm (如图6a中箭头所示)。由于晶界处应力集中程度大,为协调变形,多个滑移系启动,造成取向梯度大,位错塞积严重,从而有利于动态再结晶形核[30]。2道次变形后,晶界处再结晶晶粒数目增多,且再结晶向粗晶内部扩展,如图6b中箭头所示区域。3道次变形后,晶界处再结晶程度进一步扩大。同时,粗晶内部形成了再结晶晶粒构成的条带状组织,如图6c和d中白色虚线所示,该条带状再结晶组织与图5b、c中的金相组织结果具有一致性。

图6

图6   合金锻后各道次样品SEM像

Fig.6   SEM images of multi-directional forged alloy after 1-pass (a), 2-pass (b), 3-pass (c) and 6-pass (d)


综上可知,晶界、孪晶与扭折带均能诱发动态再结晶。图7为合金多向锻造过程中再结晶行为示意图。多向锻造初期,晶界处优先出现动态再结晶晶粒,孪晶内部及界面处无明显动态再结晶。随变形程度的增加,晶界处再结晶体积分数增大,同时孪晶内出现动态再结晶晶粒。并且,发生孪生及扭折的晶粒数目增多,孪晶与扭折带切割细化粗晶。继续增大变形量,晶界与孪晶内再结晶程度增大,孪生区域逐渐演变为条带状细晶组织,同时扭折界面也成为动态再结晶形核点,协同细化晶粒。在孪生与扭折切割晶粒,晶界处动态再结晶,孪生与扭折诱发再结晶多种机制的共同作用下,原始粗大晶粒得到了显著细化。此外,晶内片层状LPSO相对晶粒细化也存在一定的促进作用。根据Zhou等[17]的研究结果,晶内细小层片状的LPSO相对动态再结晶的晶界迁移具有抑制作用,降低了合金动态再结晶体积分数;而晶内块状的LPSO相能够通过PSN (particle stimulated nucleation)机制促进动态再结晶形核,从而提高了合金的再结晶体积分数。本实验初始态合金中的LPSO相尺寸较小且密集分布在晶粒内部(图3)。参照Zhou等[17]的研究结果,本工作中的LPSO相对再结晶会产生抑制效果。结合图5及6可知,孪晶内的再结晶及晶界处的再结晶晶粒细小,并且再结晶并未向基体发生明显的扩张,意味着基体中的LPSO相对动态再结晶晶粒的长大及迁移具有一定的抑制作用。同时,如图4h所示,6道次变形后显微组织中仍然能够观察到大量未再结晶的残留基体,也说明LPSO相对合金的动态再结晶具有一定的抑制作用。

图7

图7   多向锻造过程中的动态再结晶行为示意图

Fig.7   Schematic of the DRX behavior during multi-directional forging

(a) 1-pass (b) 2 and 3-pass (c) 6-pass


为研究合金多向锻造过程中的变形机制,对合金进行EBSD分析,结果如图8所示。其中取向成像图的颜色参照方向为最终锻造压下方向,记作CD,即:红色代表晶粒c轴平行于CD方向,蓝色和绿色分别代表晶粒<101¯0>晶向和<112¯0>晶向平行于CD方向。大角度晶界(>15°)与小角度晶界(4°~15°)分别用黑线与白线标识。1道次锻造后,c轴垂直于CD方向的晶粒内孪生大量激发,如图8a左侧箭头所示。该孪晶与基体具有86°<112¯0>的取向关系,属于{101¯2}拉伸孪晶。并且该晶粒取向符合垂直于c轴压缩时易于激发{101¯2}拉伸孪晶的规律[23,31]c轴近似平行于CD方向的晶粒内孪生数目明显减少且孪晶尺寸非常小,如图8a中椭圆区域所示。对于未孪生或者少孪生晶粒而言,滑移为合金变形初期的主导变形机制,且滑移不均匀性导致了明显的晶内取向梯度。此外,晶界处能够观察到少量细小的动态再结晶晶粒,与图6a中SEM观测结果具有一致性。2、3道次变形后,发生孪生变形的晶粒数目增多。这是由于1道次变形中不利于孪生激发的晶粒在后续变形过程中可能转到利于孪生激发的取向。如图8b中椭圆标识的晶粒,其c轴垂直于2道次压缩方向,处于{101¯2}拉伸孪生的有利取向。6道次变形后,粗晶体积分数大为降低,再结晶体积分数增大,合金变形组织由残留粗晶与再结晶细晶共同构成。图8d中的放大图表明,再结晶晶粒尺寸约为4 μm,晶体取向分布较为随机。

图8

图8   合金锻后各道次取向成像图

Fig.8   Orientation maps of multi-directional forged alloy after 1-pass (a), 2-pass (b), 3-pass (c) and 6-pass (d) (Twins with smaller size can be observed in the grains with c-axes near parallel to the forging direction, as marked as ellipses in Fig.8a; with the changing of forging direction, untwined grains in the 1-pass are rotated to the favorable orientation for twinning (<21¯1¯0> parallel to CD), as indicated by ellipses in Fig.8b)

Color online


为研究锻造过程中{101¯2}拉伸孪生变形的晶体取向相关性,对比分析了1道次变形过程中孪生晶粒(记做A)与部分未孪生晶粒(记做B、C、D、E) Schmid因子的差异性。如图9a所示,孪生晶粒内多个变体同时激发({101¯2}孪晶界用黄线标识),同一变体通过粗化合并形成粗大的孪晶。然而,构成粗大孪晶中的各小孪晶沿孪生切变方向长度不一,且孪晶尖端终止于晶粒内部,意味着孪晶沿切变方向的长大受到阻碍并导致新的孪晶在晶界处形核,如图中椭圆及箭头所示。研究[14]表明,LPSO相抑制孪晶长大但几乎不影响孪晶形核。类似结论也存在于Mg-Zn合金的孪生现象中,含第二相的样品中孪晶尺寸小而数量多,第二相对孪晶形核影响并不显著[32]。虽然本工作中孪晶长大受到LPSO相的抑制,但是孪晶形核未受到明显阻碍,多孪晶形核及长大使晶粒获得较大的孪晶体积分数(约为58.4%),因此孪生依然为该晶粒的主导变形机制。

图9

图9   合金1道次锻造后孪生及未孪生晶粒取向成像图、{0001}极图及孪生与基面滑移Schmid因子分析

Fig.9   The orientation maps (a, d) and {0001} pole figures (b, e) of the twinned (a, b) and untwined (d, e) grains after 1-pass forging, and distributions of Schmid factor for {101¯2} tensile twinning (c) and basal <a> slip (f) in {0001} pole figure (Due to the inhibition of LPSO phases, twinning propagation is arrested. While twining nucleation is promoted and multiple fine twins constitutes a coarse twin by twins-merging, as indicated by the ellipse in Fig.9a. The twin variants are marked as T1 and T2. The matrices of different grains are marked as A~E)

Color online


hcp结构镁合金具有6个等效的孪生变体,按照位置关系可以将6个变体归为邻位、间位以及对位变体3类,其中对位变体取向非常接近,取向差仅为7.4°[33]。该孪生晶粒中激发的孪晶具有非常接近的c轴取向,如图9a中的六棱柱及图9b中的{0001}极图所示,这意味着激发的孪晶为对位变体[34]图9c为c轴取向固定且沿CD方向压缩时,6个变体Schmid因子最大值在极图中的分布特征。参照图9b与c可知,A晶粒处于{101¯2}孪生变形非常有利的取向。图9d和e为未孪生晶粒B~E的取向成像图及其c轴在{0001}极图中的取向分布。根据{0001}极图及图9c可知,这部分晶粒最高孪生Schmid因子均低于0.2,取向不利于孪生激发;基面滑移Schmid因子高于0.4,如图9f所示。对于镁合金滑移系而言,基面滑移具有最低的临界分切应力[35],是镁合金塑性变形中最常见的变形机制,因此可以推断基面滑移为这部分晶粒的主导变形机制。

除孪生与滑移外,扭折变形也是含LPSO相镁合金塑性变形过程中的一种重要机制,受平行于基面压缩的载荷作用甚至能够替代孪生来协调变形。图10为2道次变形后既发生扭折变形又发生{101¯2}拉伸孪生的晶粒及其取向分布特征。晶内取向差角度分布如图10b所示。变形后晶粒出现大量大角度晶界,其数值主要分布在15°~30°及60°~90°范围,前者来源于扭折带与基体的取向差,而后者来源于孪晶与扭折带及孪晶与基体的取向差。为研究扭折带类型及形成机制,仅包含扭折区域的取向成像图及不同取向差角度范围下的晶内取向差转轴(IGMA)分布如图10c和d所示,其中图10c为隐藏孪生区域后的图10a。根据Yamasaki等[15]的研究结果可知,扭折带取向差的增大主要来源于带内位错的增殖与滑移,并且通过对比扭折带的IGMA分布和特定滑移系的Taylor轴[36],能够判定构成扭折带及取向变化的主要滑移机制。当IGMA分布集中在<11¯00>时,意味着扭折变形主要通过单一Burgers矢量的基面<a>滑移来进行;当IGMA分布集中在<12¯10>时,意味着扭折变形主要通过具有不同Burgers矢量的基面<a>滑移来进行;而当IGMA分布集中在<0001>时,意味着扭折变形主要通过柱面<a>滑移来进行。观察图10d可知,扭折导致的取向差转轴主要集中在<101¯0>方向,意味着扭折带的形成和取向演变与基面<a>滑移密切相关,且位错滑移的方向确定,不存在其它方向的变体。扭折带的形成有利于释放应力集中,提高材料塑性成形的能力;同时,不同取向扭折带的出现导致晶体取向分布多样化,有利于多晶体织构的弱化;并且扭折带界面被证实可以诱发动态再结晶,起到细化晶粒的效果[28,29]

图10

图10   合金2道次锻造后同一晶粒内的孪生及扭折现象分析

Fig.10   Analyses of twinned and kinked grains of the alloy in 2-pass

Color online

(a) orientation map of twinned and kinked grains

(b) misorientation angle distribution

(c) orientation coloring map of kink region (Fig.10c hides the twined region of Fig.10a)

(d) in-grain misorientation axes (IGMA) distribution ("pts" is the abbreviation of "points", and means the number of points with the defined misorientation

(e) magnified view of black-lined region in Fig.10a

(f) {0001}, {101¯0} and {112¯0} pole figures of grain in Fig.10e (Numbers 1~3 represent the matrix, kinked region and twined region respectively; the arrow in {101¯0} pole figure means one of the {101¯0} pole of the kink band and the matrix is coincided; the arrow in {112¯0} pole figure means one of the {112¯0} pole of the twin and the matrix is coincided)


为进一步说明孪生与扭折机制之间的相互作用,对孪晶、扭折带以及基体(图10a中黑框所示区域)的位向关系作进一步的分析,结果如图10e和f所示,其中数字标号1~3分别代表基体、扭折带与孪晶。观察图10e可知,晶粒内部孪晶与扭折带相互交错,孪晶贯穿扭折带之间的基体,并终止于基体与扭折带的界面,扭折带内未发现孪晶,可以推断扭折先于孪生发生,而后孪生在扭折界面形核并在基体内不断长大。反之,如果是孪生先于扭折进行,扭折基面两侧的孪晶应该连续。Wang等[37]在Mg-Y合金原位拉伸实验中发现,扭折先于孪生发生且扭折界面的基面位错能够促进{101¯2}孪生形核,并且,大多数孪晶受到扭折界面的阻碍而无法进一步长大,仅能沿扭折带外基体扩展。图10e的实验现象很好地符合了上述扭折与孪生关系的实验结论,即扭折界面为{101¯2}孪生提供形核点,同时阻碍孪晶扩展。孪生与扭折导致的基体取向改变如图10f中的极图和六棱柱所示。扭折带的基面相较于周围的基体发生了明显偏转,由于不同扭折带及同一扭折带不同区域基面旋转存在差异性,从而导致{0001}极图中基面法向(c轴)呈现初始位置向CD方向连续分布的特征。如图10f中箭头所示,扭折带与基体的其中一个{101¯0}极点重合,意味着扭折带与基体的<101¯0>方向重合,这与图10d中取向差转轴为<101¯0>的结果相符合。类似地,基体与孪晶取向差转轴为<112¯0>,从而导致其中一个{112¯0}极点重合。虽然孪生与扭折均导致了原始晶体的取向发生了变化,但是两者导致取向变化的方式截然不同。孪生主要通过原子切变及重组方式,存在固定的取向关系及转轴。而扭折导致的取向变化及转轴不存在确定值,与变形量及启动的位错类型密切相关。在压缩方向平行于基面时,{101¯2}孪生与扭折均处于易于激发的晶体取向。因此,整个晶粒右下部分(图10a)孪生大量激发,而对于中部区域,孪生与扭折同时激发。晶内不同区域孪生与扭折的差异原因目前尚不十分清楚,可能与晶粒的局部应力状态及不同区域LPSO相的分布及尺寸差异有关。

为研究多向锻造过程中载荷方向变化对合金{101¯2}拉伸孪生激发的影响,分析了3道次变形后,含有4种孪晶变体的晶粒在不同载荷下的孪生Schmid因子,如图11所示。为更好地区分基体与孪晶形貌特征,图11a中的取向成像图参考方向设置为视线方向。该晶粒内激发的4种孪生变体标记为T1~T4。相比于形貌较为规则的T2~T4孪晶变体,T1孪晶及附近基体的形貌发生了较大改变,部分孪晶与基体失去了{101¯2}孪生取向关系,因此推测该孪晶为2道次(CD-2 pass)激发的孪晶,并且在后续变形中发生塑性变形,从而导致其形貌变化及晶体取向差偏离理论值。而形貌规则的孪晶T2~T4为3道次(CD-3 pass)激发的不同变体。根据孪晶c轴与压缩轴的关系也可验证上述推断。Hong等[33]研究发现,当平行于镁合金基面压缩且孪生变体的激发受Schmid定律控制时,激发的孪晶变体的c轴近似平行于压缩方向。如图11a中六棱柱所示,T1孪晶c轴近似平行于CD-2 pass,而T2~T4孪晶c轴近似平行于CD-3 pass,该结果与上述结论具有一致性。为进一步验证上述猜想,根据T1孪晶附近基体M1的取向,计算了2道次压缩载荷下6个理论变体的Schmid因子,结果如图11c所示。V1与V2 2个对位变体较其它变体具有更高的Schmid因子,而实际激发的孪晶T1的位置与V1与V2位置重合,如图11b与c所示,说明T1极有可能为2道次变形过程中激发的孪晶。在3道次变形中,载荷方向旋转90°,根据T2~T4附近的基体M2的取向计算得到的6个变体的Schmid因子如图11d所示。可以看出,V3与V4的位置与实际孪晶T2重合,而V5与V6的位置与实际孪晶T3和T4重合,如图11b与d所示,并且2组变体均具有较高的Schmid因子,因此3个变体可以同时激发。由此可见,多向锻造各道次变形过程中,不同载荷方向下Schmid因子最高的孪生变体种类及数量存在差异,并且具有更高Schmid因子的变体优先激发。因此,多向锻造过程中载荷不断变化,上道次未能激发孪晶的基体在后续变形过程中可能转为孪生有利取向,从而激发孪晶,最终造成一个粗晶内多孪晶变体同时出现的现象,并且多个孪晶变体的出现更加有利于铸态粗晶细化,如图11e所示。

图11

图11   合金3道次锻造后孪生晶粒取向成像图、极图及孪生变体Schmid因子分析

Fig.11   Orientation map of twined grain in 3-pass (a), {0001} pole figure of grain in Fig.11a (b), distribution of twinning variants' Schmid factor of M1 in {0001} pole figure during 2-pass (c), distribution of twinning variants' Schmid factor of M2 in {0001} pole figure during 3-pass (d), and schematic diagram of twin variants (e) (M1 and M2 represent the matrices, T1~T4 represent the actual twin variants of two grains in Fig.11a; V1~V6 represents the six possible twin variants acquired according to the orientation of the matrix)

Color online


综上可知,LPSO相对显微组织的影响源自对孪生、扭折及动态再结晶多个方面的综合作用。LPSO相抑制{101¯2}孪生长大,但对其形核影响不大,因此孪生体积分数依然较高;LPSO相的存在引入了扭折变形,扭折变形带界面能够诱发再结晶,有利于细化晶粒尺寸;此外,LPSO相通过阻碍晶界迁移抑制再结晶晶粒长大,有利于细化再结晶晶粒尺寸,但其对再结晶的抑制也导致了6道次变形后合金中残留大量未再结晶的基体,延缓了合金的完全动态再结晶。

3 结论

(1) 多向锻造初期,部分晶粒内激发孪生,晶界处诱发动态再结晶。随着锻造方向的改变,发生孪生变形的晶粒数目增多,同时晶界再结晶体积分数增多。终锻变形后,合金未发生完全动态再结晶,形成粗晶与细晶构成的混晶组织,动态再结晶晶粒尺寸约为4 μm且取向分布较为随机。

(2) {101¯2}拉伸孪生是合金多向锻造过程中的主要变形机制。{101¯2}拉伸孪晶的激发存在取向相关性,锻造方向变化有利于不同晶体取向的晶粒激发孪生,孪生变体的选择符合Schmid定律。除孪生外,扭折也是合金平行于基面受压时的重要变形机制;扭折带类型主要为基面扭折,取向差转轴分布集中在<101¯0>方向。

(3) 多向锻造过程中晶界、孪晶及扭折带均可诱发动态再结晶。随变形程度增加,孪晶逐渐演化为再结晶条带状组织;扭折带诱发再结晶程度较孪晶低,仅部分扭折带界面能诱发再结晶。多孪晶变体激发及晶内大角度扭折带切割粗晶和晶界、孪晶及扭折带诱发再结晶的共同作用下,原始粗晶组织得到了显著细化。

参考文献

Ding W J.

Magnesium Alloy Science and Technology

[M]. Beijing: Science Press, 2007: 24

[本文引用: 1]

丁文江.

镁合金科学与技术

[M]. 北京: 科学出版社, 2007: 24

[本文引用: 1]

Dahle A K, Lee Y C, Nave M D, et al.

Development of the as-cast microstructure in magnesium-aluminum alloys

[J]. J. Light Met., 2001, 1: 61

[本文引用: 1]

Zhang J H, Leng Z, Liu S J, et al.

Microstructure and mechanical properties of Mg-Gd-Dy-Zn alloy with long period stacking ordered structure or stacking faults

[J]. J. Alloys Compd., 2011, 509: 7717

[本文引用: 1]

Polmear I J.

Magnesium alloys and applications

[J]. Mater. Sci. Technol., 1994, 10: 1

[本文引用: 1]

Zeng R C, Ke W, Xu Y B, et al.

Recent development and application of magnesium alloys

[J]. Acta Metall. Sin., 2001, 37: 673

[本文引用: 1]

曾荣昌, 柯 伟, 徐永波.

Mg合金的最新发展及应用前景

[J]. 金属学报, 2001, 37: 673

[本文引用: 1]

Miura H, Maruoka T, Yang X, et al.

Microstructure and mechanical properties of multi-directionally forged Mg-Al-Zn alloy

[J]. Scr. Mater., 2012, 66: 49

[本文引用: 1]

Kawamura Y, Hayashi K, Inoue A, et al.

Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa

[J]. Mater. Trans., 2001, 42: 1172

[本文引用: 1]

Li Y X, Zhu G Z, Qiu D, et al.

The intrinsic effect of long period stacking ordered phases on mechanical properties in Mg-RE based alloys

[J]. J. Alloys Compd., 2016, 660: 252

[本文引用: 1]

Zhu J, Chen J B, Liu T, et al.

High strength Mg94Zn2.4Y3.6 alloy with long period stacking ordered structure prepared by near-rapid solidification technology

[J]. Mater. Sci. Eng., 2017, A679: 476

[本文引用: 1]

Shao J B, Chen Z Y, Chen T, et al.

Texture evolution, deformation mechanism and mechanical properties of the hot rolled Mg-Gd-Y-Zn-Zr alloy containing LPSO phase

[J]. Mater. Sci. Eng., 2018, A731: 479

[本文引用: 1]

Xie G M, Ma Z Y, Xue P, et al.

Effects of tool rotation rates on superplastic deformation behavior of friction stir processed Mg-Zn-Y-Zr alloy

[J]. Acta Metall. Sin., 2018, 54: 1745

[本文引用: 1]

谢广明, 马宗义, 薛 鹏.

工具转速对搅拌摩擦加工Mg-Zn-Y-Zr耐热镁合金超塑性行为的影响

[J]. 金属学报, 2018, 54: 1745

[本文引用: 1]

Li K, Chen Z Y, Chen T, et al.

Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Zn alloy with LPSO phases

[J]. J. Alloys Compd., 2019, 792: 894

DOI      URL     [本文引用: 1]

Matsuda M, Ando S, Nishida M, et al.

Dislocation structure in rapidly solidified Mg97Zn1Y2 alloy with long period stacking order phase

[J]. Mater. Trans., 2005, 46: 361

[本文引用: 2]

Matsuda M, Ii S, Kawamura Y, et al.

Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg97Zn1Y2 alloy

[J]. Mater. Sci. Eng., 2004, A386: 447

[本文引用: 4]

Yamasaki M, Hagihara K, Inoue S I, et al.

Crystallographic classification of kink bands in an extruded Mg-Zn-Y alloy using intragranular misorientation axis analysis

[J]. Acta Mater., 2013, 61: 2065

[本文引用: 3]

Shao X H, Yang Z Q, Ma X L.

Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure

[J]. Acta Mater., 2010, 58: 4760

[本文引用: 2]

Zhou X J, Liu C M, Gao Y H, et al.

Evolution of LPSO phases and their effect on dynamic recrystallization in a Mg-Gd-Y-Zn-Zr alloy

[J]. Metall. Mater. Trans., 2017, 48A: 3060

DOI      URL     PMID      [本文引用: 4]

Repetitive upsetting extrusion (RUE) was applied to the as-homogenized Mg-12.0Gd-4.5Y-2Zn-0.4Zr (wt %) alloy at 773 K. The microstructure evolution of the alloy during RUE was investigated. The results indicated that almost all Mg₅(Gd,Y,Zn) phases and fine-lamellar long-period stacking-ordered (LPSO) phases were dissolved into the matrix after homogenization treatment at 793 K for 16 h. After one RUE pass, dynamic recrystallization (DRX) occurred. During subsequent RUE passes (from one to three passes), average volume fractions of DRXed grains increased from 43.9% to 65.8%, and that of fine-lamellar and block-shaped LPSO phases gradually decreased. All samples exhibited a typical bimodal microstructure consisting of some initial grains containing fine-lamellar LPSO phases, but consisting mostly of fine-DRXed grains with a mean grain size of 6 μm. Because of an increase in the accumulated strains, the coarse grains were substituted with fine-DRXed grains, the grains were gradually refined, and the microstructure distribution became more homogeneous.

Zhang D X, Tan Z, Huo Q H, et al.

Dynamic recrystallization behaviors of Mg-Gd-Y-Zn-Zr alloy with different morphologies and distributions of LPSO phases

[J]. Mater. Sci. Eng., 2018, A715: 389

[本文引用: 2]

Miura H, Yu G, Yang X.

Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties

[J]. Mater. Sci. Eng., 2011, A528: 6981

[本文引用: 1]

Wang B Z, Liu C M, Gao Y H, et al.

Microstructure evolution and mechanical properties of Mg-Gd-Y-Ag-Zr alloy fabricated by multidirectional forging and ageing treatment

[J]. Mater. Sci. Eng., 2017, A702: 22

[本文引用: 1]

Wu Y Z, Yan H G, Chen J H, et al.

Microstructure and mechanical properties of ZK21 magnesium alloy fabricated by multiple forging at different strain rates

[J]. Mater. Sci. Eng., 2012, A556: 164

[本文引用: 1]

Mehrabi A, Mahmudi R, Miura H.

Superplasticity in a multi-directionally forged Mg-Li-Zn alloy

[J]. Mater. Sci. Eng., 2019, A765: 138274

[本文引用: 1]

Deng L P, Cui K X, Wang B S, et al.

Microstructure and texture evolution of AZ31 Mg alloy processed by multi-pass compressing under room temperature

[J]. Acta Metall. Sin., 2019, 55: 976

[本文引用: 2]

邓丽萍, 崔凯旋, 汪炳叔.

AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究

[J]. 金属学报, 2019, 55: 976

[本文引用: 2]

Matsuda M, Ii S, Kawamura Y, et al.

Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy

[J]. Mater. Sci. Eng., 2005, A393: 269

[本文引用: 1]

Yamasaki M, Sasaki M, Nishijima M, et al.

Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature

[J]. Acta Mater., 2007, 55: 6798

DOI      URL     [本文引用: 1]

AbstractThis paper proposes a time–temperature-transformation diagram of an Mg–Zn–Gd alloy. An Mg97Zn1Gd2 (at.%) alloy shows different precipitation sequences at low, medium and high temperatures. Low-temperature aging at <523 K brings about coherent β′-phase precipitation to a α-Mg solid solution, resulting in increase in strength of the alloys. However, aging at medium and high temperatures >623 K led to strengthening of the Mg–Zn–Gd alloy, owing to the formation of profuse stacking faults and 14H long period stacking ordered structure from the supersaturated α-Mg matrix, respectively.]]>

Xiao H C, Jiang S N, Tang B, et al.

Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Y-Zr alloy

[J]. Mater. Sci. Eng., 2015, A628: 311

[本文引用: 1]

Guan D K, Rainforth W M, Ma L, et al.

Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy

[J]. Acta Mater., 2017, 126: 132

[本文引用: 1]

Liu W, Zhang J S, Wei L Y, et al.

Extensive dynamic recrystallized grains at kink boundary of 14H LPSO phase in extruded Mg92Gd3Zn1Li4 alloy

[J]. Mater. Sci. Eng., 2017, A681: 97

[本文引用: 2]

Wu J, Ikeda K I, Shi Q, et al.

Kink boundaries and their role in dynamic recrystallisation of a Mg-Zn-Y alloy

[J]. Mater. Charact., 2019, 148: 233

[本文引用: 2]

Yu Y N.

Metallurgical Principle

[M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2013: 931

[本文引用: 1]

余永宁.

金属学原理

[M]. 第2. 北京: 冶金工业出版社, 2013: 931

[本文引用: 1]

Chapuis A, Xin Y C, Zhou X J, et al.

{101¯2} twin variants selection mechanisms during twinning, re-twinning and detwinning

[J]. Mater. Sci. Eng., 2014 ,A612: 431

[本文引用: 1]

Stanford N, Barnett M R.

Effect of particles on the formation of deformation twins in a magnesium-based alloy

[J]. Mater. Sci. Eng., 2009, A516: 226

[本文引用: 1]

Hong S G, Park S H, Lee C S.

Role of {101¯2} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy

[J]. Acta Mater., 2010, 58: 5873

[本文引用: 2]

Guo C F, Xin R L, Zheng X, et al.

Influence of observation plane on twin variant identification in magnesium via trace and misorientation analysis

[J]. Mater. Sci. Eng., 2014, A618: 558

[本文引用: 1]

Barnett M R.

A Taylor model based description of the proof stress of magnesium AZ31 during hot working

[J]. Metall. Mater. Trans., 2003, 34A: 1799

[本文引用: 1]

Chun Y B, Davies C H J.

Investigation of prism <a> slip in warm-rolled AZ31 alloy

[J]. Metall. Mater. Trans., 2011, 42A: 4113

[本文引用: 1]

Wang L, Sabisch J, Lilleodden E T.

Kink formation and concomitant twin nucleation in Mg-Y

[J]. Scr. Mater., 2016, 111: 68

[本文引用: 1]

/