Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶
Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging
通讯作者: 陈志永,czysh@netease.com,主要从事镁合金微观组织与力学性能的研究
收稿日期: 2019-09-05 修回日期: 2019-10-11 网络出版日期: 2020-04-23
基金资助: |
|
Corresponding authors: CHEN Zhiyong, professor, Tel:
Received: 2019-09-05 Revised: 2019-10-11 Online: 2020-04-23
Fund supported: |
|
作者简介 About authors
张阳,女,1995年生,硕士
以含长周期堆垛有序(LPSO)相的Mg-5.6Gd-0.8Zn (质量分数,%)合金为研究对象,分析了合金多向锻造过程中的变形机制、动态再结晶及显微组织演变。结果表明:变形初期,{
关键词:
Multi-directional forging (MDF) is an effective way to fabricate wrought magnesium alloy with ultrafine grains and random texture. Therefore, microstructure evolution and dynamic recrystallization (DRX) of magnesium alloys during MDF process have been widely investigated. Mg-Zn-RE alloys containing long-period stacking ordered (LPSO) phase have received considerable attention owing to their excellent mechanical properties. In addition, LPSO phase has great effects on the deformation mechanism and DRX behavior. Still, limited comprehensive studies can be found in the literature dealing with the microstructure evolution, deformation mechanism and DRX of magnesium alloys containing LPSO phase in MDF deformation. In this work, MDF was applied to a Mg-5.6Gd-0.8Zn (mass fraction, %) alloy containing LPSO phase. Microstructure characteristics, deformation mechanism and DRX behavior of the material in different passes were examined. Results show that there are several stages of the microstructure evolution. Twinning was activated only in a small part of grains in the early stage of deformation. As the forging direction changes, the number of twinned grains and the volume fraction of DRX grains increased. A mixed structure with coarse deformed grain and DRX grains was sustained till last forging pass, and the average size of DRX grains is about 4 μm with a random orientation. {
Keywords:
本文引用格式
张阳, 邵建波, 陈韬, 刘楚明, 陈志永.
ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong.
Mg及镁合金作为最轻的金属结构材料,密度仅为1.74 g/cm3,是钢的23%,Al的64%,具有比强度高、比刚度高、阻尼性能好等优点,在航空航天、民用运输及电子产品等领域具有广阔的应用前景[1,2,3]。然而,与传统的钢铁材料、铝合金相比,镁合金室温成形性差、强度低、耐蚀性较差等缺点严重限制了镁合金在工业上的应用[4,5]。大量不同的实验方法被用于提高镁合金的综合性能,其中添加稀土元素和制备细晶是具有革新性的方法[6]。2001年,Kawamura等[7]通过粉末冶金法制备的含长周期堆垛有序结构(LPSO)相的Mg-Zn-Y合金室温屈服强度超过600 MPa,自此,含LPSO相镁合金的热变形行为开始受到研究者的广泛关注[8,9,10,11,12]。
近年来,众多研究[13,14,15,16,17,18]表明LPSO相的存在对滑移、孪生、扭折及动态再结晶均存在一定影响。Matsuda等[13]研究发现,LPSO相的存在提升了基面位错启动的临界分切应力(CRSS),抑制了基面滑移的启动,促进了非基面滑移的激活,基面滑移的抑制以及非基面滑移的启动提高了合金的变形抗力和延伸率。同时,还发现在快速凝固Mg-Zn-Y合金中密集分布的LPSO相显著抑制了{
综上可知,LPSO相的存在和多向锻造均会对合金变形机制及显微组织演变产生影响。因此,本工作通过热处理工艺制备含有LPSO相的Mg-5.6Gd-0.8Zn (质量分数,%,下同)合金,研究多向锻造过程中合金的孪生、扭折、动态再结晶行为和显微组织演变规律,为含LPSO相镁合金微观组织及力学性能调控提供参考。
1 实验方法
1.1 合金制备及热处理制度
实验通过半连续铸造方法制备了Mg-5.6Gd-0.8Zn合金,原材料为:纯Mg (99.99%)、纯Zn (99.9%)及Mg-30%Gd中间合金。铸锭截面尺寸为直径120 mm。利用线切割工艺从铸锭中切取尺寸为40 mm×40 mm×40 mm的正方体样品,对样品进行515 ℃、40 h的均匀化及水冷处理后,再进行420 ℃、12 h的退火处理及水冷处理,最终获得析出大量层片状LPSO相的Mg-5.6Gd-0.8Zn退火态合金。
1.2 多向锻造工艺
多向锻造在3150 kN的YA32-315压力机上进行,锻造温度450 ℃。试样变形前先在锻造温度(450 ℃)下进行0.5 h的预热,预热后随即进行1、2、3和6道次的多向锻造,每道次变形量为15%。多向锻造流程如图1a所示,载荷加载面按照A→B→C→A…的顺序循环进行,各道次锻造完成后直接进行水冷处理以保留热变形组织。
图1
图1
多向锻造流程及微观组织观测取样位置示意图
Fig.1
Schematics of multi-directional forging (a) and the position of the sample for microstructure examination (b)
1.3 显微组织表征
采用4XC-2金相显微镜(OM)、配有电子背散射衍射(EBSD)附件的Nanolab 600i型扫描电镜(SEM)和Titan G2 60-300型扫描透射电镜(STEM),对退火态合金及各锻造样品芯部的显微组织特征进行观察与分析,如图1b所示,各样品观察面平行于最后道次锻压方向。OM及SEM试样的腐蚀剂配方为2.1 g苦味酸+5 mL冰醋酸+5 mL蒸馏水+35 mL无水乙醇;EBSD试样由机械抛光+电解抛光方法制备,电解液成分为4%高氯酸乙醇溶液;TEM样品由电解双喷法制备,双喷液成分为4%高氯酸乙醇溶液。
2 结果与讨论
2.1 铸态、热处理态合金的显微组织
图2
图2
铸态、均匀化态及退火态Mg-5.6Gd-0.8Zn合金的SEM像
Fig.2
SEM images of as-cast (a), homogenized (b) and annealed (c, d) Mg-5.6Gd-0.8Zn alloy before multi-directional forging (The lamellar second phases are indicated by black arrows in Fig.2d, LPSO—long-period stacking ordered)
图3
图3
退火态合金长周期堆垛结构(LPSO)相的STEM像
Fig.3
STEM image and selected area electron diffraction (SAED) pattern (a) and magnification of the LPSO phase as marked in Fig.3a (b) (Beam direction is <
2.2 合金锻造过程中的显微组织、变形机制及动态再结晶
合金多向锻造过程中的显微组织演变如图4所示,其中图4b、d、f、h分别为图4a、c、e、g中矩形区域的放大图。1道次变形后,部分晶粒内部出现多个变体同时激发的孪生现象,如图4b中箭头所示。并且单个晶粒内孪晶片层厚度较薄,粗大的孪晶为多个孪晶粗化合并导致。一方面,单道次变形量较小,孪晶厚度较小;另一方面,晶内LPSO相对孪晶长大也存在一定的阻碍作用[14]。由于铸态合金中晶体取向较为随机,并且孪生的激发极大地依赖于晶体取向,因此仅有部分晶粒内发生了孪生变形。此外,金相组织中未观察到明显的动态再结晶行为。2、3道次变形后,发生孪生的晶粒数目明显增加,由于载荷方向发生变化,原本不利于孪生的晶粒可能在后续变形中激发孪生,从而导致孪生体积分数显著提高(如图4c与e所示)。大量交错或平行的孪晶切割原始粗晶,晶粒细化程度提高。并且,粗晶晶界及内部能够观察到再结晶组织,晶内再结晶组织呈链状或条状的分布特征,如图4f所示。6道次变形后,晶粒内未观察到低道次变形显微组织中的条状孪晶,而是出现大量由再结晶细晶构成的条带状组织,如图4h所示。并且该条带状细晶组织与低道次变形后平行或交叉的孪晶形貌特征极为相似,可以推断孪晶片层在后续变形过程中发生再结晶并逐渐演化为再结晶条带状组织。Xiao等[26]的研究中也报道了孪晶诱发再结晶并形成再结晶条带状组织的现象,与本工作的实验结果相符。
图4
图4
退火态合金锻后各道次显微组织的OM像
Fig.4
OM images (a, c, e, g) and the corresponding magnifications of boxes (b, d, f, h) of annealed alloy after multi-directional forging of 1-pass (a, b), 2-pass (c, d), 3-pass (e, f) and 6-pass (g, h) (DRX—dynamic recrystallization)
为进一步研究合金锻造过程中孪晶诱发再结晶行为及演变过程,对不同锻造道次变形后孪晶及再结晶晶粒形貌特征进行金相显微观察,结果如图5所示。1道次变形后,孪晶条带平直,内部未观察到明显的再结晶晶粒,如图5a所示。2道次变形后,部分孪晶演变为再结晶细晶组织,如图5b中的箭头所示,而剩余的孪晶在后续应力与温度作用下也极有可能演变为再结晶组织。因此,6道次变形后,能够观察到大量的条带状动态再结晶组织,孪晶几乎完全被动态再结晶晶粒占据,如图5c所示。Guan等[27]研究发现,孪晶形成后其内部基体在后续变形过程中的滑移是导致孪晶诱发再结晶的主要原因:一般而言,孪生变形后,孪晶基体处于滑移变形的硬取向,特别是基面滑移,而多向锻造过程中载荷方向不断变化可能利于孪晶内基体的滑移变形,因此能够促进孪晶诱发再结晶并形成条带状细晶组织。除了孪晶诱发再结晶,扭折带诱发再结晶也是含LPSO相镁合金中一种重要的再结晶机制,扭折界面的位错堆积和应力集中均有利于动态再结晶的形核与长大[28]。因此,再结晶晶粒会沿扭折界面形核并长大,如图5d中箭头所示。但并非所有的扭折界面均能诱发再结晶。Wu等[29]指出,扭折界面诱发再结晶与扭折界面取向差密切相关,大角度扭折界面的高应变储能更容易促进再结晶形核。
图5
图5
多向锻造过程中孪生及扭折诱发再结晶
Fig.5
Twin-induced and kink-induced DRX
(a) twinning in 1-pass (b) twinning and DRX in 2-pass
(c) strip-like DRX structure in 6-pass (d) kink-induced DRX in 6-pass
图6
图6
合金锻后各道次样品SEM像
Fig.6
SEM images of multi-directional forged alloy after 1-pass (a), 2-pass (b), 3-pass (c) and 6-pass (d)
综上可知,晶界、孪晶与扭折带均能诱发动态再结晶。图7为合金多向锻造过程中再结晶行为示意图。多向锻造初期,晶界处优先出现动态再结晶晶粒,孪晶内部及界面处无明显动态再结晶。随变形程度的增加,晶界处再结晶体积分数增大,同时孪晶内出现动态再结晶晶粒。并且,发生孪生及扭折的晶粒数目增多,孪晶与扭折带切割细化粗晶。继续增大变形量,晶界与孪晶内再结晶程度增大,孪生区域逐渐演变为条带状细晶组织,同时扭折界面也成为动态再结晶形核点,协同细化晶粒。在孪生与扭折切割晶粒,晶界处动态再结晶,孪生与扭折诱发再结晶多种机制的共同作用下,原始粗大晶粒得到了显著细化。此外,晶内片层状LPSO相对晶粒细化也存在一定的促进作用。根据Zhou等[17]的研究结果,晶内细小层片状的LPSO相对动态再结晶的晶界迁移具有抑制作用,降低了合金动态再结晶体积分数;而晶内块状的LPSO相能够通过PSN (particle stimulated nucleation)机制促进动态再结晶形核,从而提高了合金的再结晶体积分数。本实验初始态合金中的LPSO相尺寸较小且密集分布在晶粒内部(图3)。参照Zhou等[17]的研究结果,本工作中的LPSO相对再结晶会产生抑制效果。结合图5及6可知,孪晶内的再结晶及晶界处的再结晶晶粒细小,并且再结晶并未向基体发生明显的扩张,意味着基体中的LPSO相对动态再结晶晶粒的长大及迁移具有一定的抑制作用。同时,如图4h所示,6道次变形后显微组织中仍然能够观察到大量未再结晶的残留基体,也说明LPSO相对合金的动态再结晶具有一定的抑制作用。
图7
图7
多向锻造过程中的动态再结晶行为示意图
Fig.7
Schematic of the DRX behavior during multi-directional forging
(a) 1-pass (b) 2 and 3-pass (c) 6-pass
为研究合金多向锻造过程中的变形机制,对合金进行EBSD分析,结果如图8所示。其中取向成像图的颜色参照方向为最终锻造压下方向,记作CD,即:红色代表晶粒c轴平行于CD方向,蓝色和绿色分别代表晶粒<
图8
图8
合金锻后各道次取向成像图
Fig.8
Orientation maps of multi-directional forged alloy after 1-pass (a), 2-pass (b), 3-pass (c) and 6-pass (d) (Twins with smaller size can be observed in the grains with c-axes near parallel to the forging direction, as marked as ellipses in Fig.8a; with the changing of forging direction, untwined grains in the 1-pass are rotated to the favorable orientation for twinning (<
Color online
为研究锻造过程中{
图9
图9
合金1道次锻造后孪生及未孪生晶粒取向成像图、{0001}极图及孪生与基面滑移Schmid因子分析
Fig.9
The orientation maps (a, d) and {0001} pole figures (b, e) of the twinned (a, b) and untwined (d, e) grains after 1-pass forging, and distributions of Schmid factor for {
Color online
hcp结构镁合金具有6个等效的孪生变体,按照位置关系可以将6个变体归为邻位、间位以及对位变体3类,其中对位变体取向非常接近,取向差仅为7.4°[33]。该孪生晶粒中激发的孪晶具有非常接近的c轴取向,如图9a中的六棱柱及图9b中的{0001}极图所示,这意味着激发的孪晶为对位变体[34]。图9c为c轴取向固定且沿CD方向压缩时,6个变体Schmid因子最大值在极图中的分布特征。参照图9b与c可知,A晶粒处于{
除孪生与滑移外,扭折变形也是含LPSO相镁合金塑性变形过程中的一种重要机制,受平行于基面压缩的载荷作用甚至能够替代孪生来协调变形。图10为2道次变形后既发生扭折变形又发生{
图10
图10
合金2道次锻造后同一晶粒内的孪生及扭折现象分析
Fig.10
Analyses of twinned and kinked grains of the alloy in 2-pass
Color online
(a) orientation map of twinned and kinked grains
(b) misorientation angle distribution
(c) orientation coloring map of kink region (Fig.10c hides the twined region of Fig.10a)
(d) in-grain misorientation axes (IGMA) distribution ("pts" is the abbreviation of "points", and means the number of points with the defined misorientation
(e) magnified view of black-lined region in Fig.10a
(f) {0001}, {
为进一步说明孪生与扭折机制之间的相互作用,对孪晶、扭折带以及基体(图10a中黑框所示区域)的位向关系作进一步的分析,结果如图10e和f所示,其中数字标号1~3分别代表基体、扭折带与孪晶。观察图10e可知,晶粒内部孪晶与扭折带相互交错,孪晶贯穿扭折带之间的基体,并终止于基体与扭折带的界面,扭折带内未发现孪晶,可以推断扭折先于孪生发生,而后孪生在扭折界面形核并在基体内不断长大。反之,如果是孪生先于扭折进行,扭折基面两侧的孪晶应该连续。Wang等[37]在Mg-Y合金原位拉伸实验中发现,扭折先于孪生发生且扭折界面的基面位错能够促进{
为研究多向锻造过程中载荷方向变化对合金{
图11
图11
合金3道次锻造后孪生晶粒取向成像图、极图及孪生变体Schmid因子分析
Fig.11
Orientation map of twined grain in 3-pass (a), {0001} pole figure of grain in Fig.11a (b), distribution of twinning variants' Schmid factor of M1 in {0001} pole figure during 2-pass (c), distribution of twinning variants' Schmid factor of M2 in {0001} pole figure during 3-pass (d), and schematic diagram of twin variants (e) (M1 and M2 represent the matrices, T1~T4 represent the actual twin variants of two grains in Fig.11a; V1~V6 represents the six possible twin variants acquired according to the orientation of the matrix)
Color online
综上可知,LPSO相对显微组织的影响源自对孪生、扭折及动态再结晶多个方面的综合作用。LPSO相抑制{
3 结论
(1) 多向锻造初期,部分晶粒内激发孪生,晶界处诱发动态再结晶。随着锻造方向的改变,发生孪生变形的晶粒数目增多,同时晶界再结晶体积分数增多。终锻变形后,合金未发生完全动态再结晶,形成粗晶与细晶构成的混晶组织,动态再结晶晶粒尺寸约为4 μm且取向分布较为随机。
(2) {
(3) 多向锻造过程中晶界、孪晶及扭折带均可诱发动态再结晶。随变形程度增加,孪晶逐渐演化为再结晶条带状组织;扭折带诱发再结晶程度较孪晶低,仅部分扭折带界面能诱发再结晶。多孪晶变体激发及晶内大角度扭折带切割粗晶和晶界、孪晶及扭折带诱发再结晶的共同作用下,原始粗晶组织得到了显著细化。
参考文献
Magnesium Alloy Science and Technology
[M].
镁合金科学与技术
[M].
Development of the as-cast microstructure in magnesium-aluminum alloys
[J].
Microstructure and mechanical properties of Mg-Gd-Dy-Zn alloy with long period stacking ordered structure or stacking faults
[J].
Recent development and application of magnesium alloys
[J].
Mg合金的最新发展及应用前景
[J].
Microstructure and mechanical properties of multi-directionally forged Mg-Al-Zn alloy
[J].
Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa
[J].
The intrinsic effect of long period stacking ordered phases on mechanical properties in Mg-RE based alloys
[J].
High strength Mg94Zn2.4Y3.6 alloy with long period stacking ordered structure prepared by near-rapid solidification technology
[J].
Texture evolution, deformation mechanism and mechanical properties of the hot rolled Mg-Gd-Y-Zn-Zr alloy containing LPSO phase
[J].
Effects of tool rotation rates on superplastic deformation behavior of friction stir processed Mg-Zn-Y-Zr alloy
[J].
工具转速对搅拌摩擦加工Mg-Zn-Y-Zr耐热镁合金超塑性行为的影响
[J].
Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Zn alloy with LPSO phases
[J].
Dislocation structure in rapidly solidified Mg97Zn1Y2 alloy with long period stacking order phase
[J].
Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg97Zn1Y2 alloy
[J].
Crystallographic classification of kink bands in an extruded Mg-Zn-Y alloy using intragranular misorientation axis analysis
[J].
Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure
[J].
Evolution of LPSO phases and their effect on dynamic recrystallization in a Mg-Gd-Y-Zn-Zr alloy
[J].Repetitive upsetting extrusion (RUE) was applied to the as-homogenized Mg-12.0Gd-4.5Y-2Zn-0.4Zr (wt %) alloy at 773 K. The microstructure evolution of the alloy during RUE was investigated. The results indicated that almost all Mg₅(Gd,Y,Zn) phases and fine-lamellar long-period stacking-ordered (LPSO) phases were dissolved into the matrix after homogenization treatment at 793 K for 16 h. After one RUE pass, dynamic recrystallization (DRX) occurred. During subsequent RUE passes (from one to three passes), average volume fractions of DRXed grains increased from 43.9% to 65.8%, and that of fine-lamellar and block-shaped LPSO phases gradually decreased. All samples exhibited a typical bimodal microstructure consisting of some initial grains containing fine-lamellar LPSO phases, but consisting mostly of fine-DRXed grains with a mean grain size of 6 μm. Because of an increase in the accumulated strains, the coarse grains were substituted with fine-DRXed grains, the grains were gradually refined, and the microstructure distribution became more homogeneous.
Dynamic recrystallization behaviors of Mg-Gd-Y-Zn-Zr alloy with different morphologies and distributions of LPSO phases
[J].
Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties
[J].
Microstructure evolution and mechanical properties of Mg-Gd-Y-Ag-Zr alloy fabricated by multidirectional forging and ageing treatment
[J].
Microstructure and mechanical properties of ZK21 magnesium alloy fabricated by multiple forging at different strain rates
[J].
Superplasticity in a multi-directionally forged Mg-Li-Zn alloy
[J].
Microstructure and texture evolution of AZ31 Mg alloy processed by multi-pass compressing under room temperature
[J].
AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究
[J].
Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy
[J].
Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature
[J].AbstractThis paper proposes a time–temperature-transformation diagram of an Mg–Zn–Gd alloy. An Mg97Zn1Gd2 (at.%) alloy shows different precipitation sequences at low, medium and high temperatures. Low-temperature aging at <523 K brings about coherent β′-phase precipitation to a α-Mg solid solution, resulting in increase in strength of the alloys. However, aging at medium and high temperatures >623 K led to strengthening of the Mg–Zn–Gd alloy, owing to the formation of profuse stacking faults and 14H long period stacking ordered structure from the supersaturated α-Mg matrix, respectively.]]>
Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Y-Zr alloy
[J].
Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy
[J].
Extensive dynamic recrystallized grains at kink boundary of 14H LPSO phase in extruded Mg92Gd3Zn1Li4 alloy
[J].
Kink boundaries and their role in dynamic recrystallisation of a Mg-Zn-Y alloy
[J].
Metallurgical Principle
[M].
金属学原理
[M]. 第
{
Effect of particles on the formation of deformation twins in a magnesium-based alloy
[J].
Role of {
Influence of observation plane on twin variant identification in magnesium via trace and misorientation analysis
[J].
A Taylor model based description of the proof stress of magnesium AZ31 during hot working
[J].
Investigation of prism <a> slip in warm-rolled AZ31 alloy
[J].
Kink formation and concomitant twin nucleation in Mg-Y
[J].
/
〈 |
|
〉 |
