Please wait a minute...
金属学报  2020, Vol. 56 Issue (3): 351-360    DOI: 10.11900/0412.1961.2019.00245
  研究论文 本期目录 | 过刊浏览 |
新型多层金属复合材料的制备与性能
张乐1,2,王威1,3(),M. Babar Shahzad1,单以银1,3,杨柯1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
3. 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
Fabrication and Properties of Novel Multi-LayeredMetal Composites
ZHANG Le1,2,WANG Wei1,3(),M. Babar Shahzad1,SHAN Yiyin1,3,YANG Ke1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
Le ZHANG, Wei WANG, Shahzad M. Babar, Yiyin SHAN, Ke YANG. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. Acta Metall Sin, 2020, 56(3): 351-360.

全文: PDF(18672 KB)   HTML
摘要: 

以超高强度马氏体时效钢和316L奥氏体不锈钢作为材料组元,研究了在高真空度下热压变形量对异质多层金属复合材料界面结合强度和界面特征的影响,探索了异质多层金属复合材料制备的可行性。结果表明,在真空热压过程中,不同变形量下复合材料的界面均十分清晰并保持平直,且发生了轻微的元素扩散。由于高温下各材料组元的流变性能存在差异,316L奥氏体不锈钢层发生明显的动态回复与动态再结晶,而马氏体时效钢层以变形态组织为主。将轧制和热处理工艺组合,制备出9层和11层块体金属复合材料。三点弯曲实验结果表明,裂纹最先萌生于受拉应力的最外侧,之后由于多层金属复合材料中异质界面的钝化、分层、桥接等作用,延长了裂纹的扩展路径并消耗了更多的能量,展现出极佳的阻碍裂纹扩展的能力。

关键词 马氏体时效钢奥氏体不锈钢多层金属复合材料真空热压界面特征弯曲性能    
Abstract

With the development of science and technology, more and more products with excellent quanlity and abundant functionalities have been exploited and provided. Inspired by the concept of "brick wall" structure or layer structure with alternated distribution of hard and soft phases discovered in nature creatures such as mother pearl shellfish, a entirely novel steel composite which not only can minimize the shortcomings of the original materials at the maximum extent, but also possess excellent mechanical performance as well as new physical properties, has been developed. Taking ultra-high strength maraging steel and 316L austenitic stainless steel as the original materials, the influence of deformation reduction under high vacuum on interfacial bonding strength and interface characteristics of heterogeneous multi-layered metal composites was studied, and the fabrication feasibility of heterogeneous multi-layered metal composites was explored. The results showed that in the vacuum hot-pressing process, the interfaces under different deformations were clear and straight. Slight mutual diffusion phenomenon occurred in the hot-pressing process. Due to the difference of rheological properties of the original materials at high temperature, dynamic recovery and dynamic recrystallization occurred in the 316L layer, while deformed microstructure was dominant in the maraging steel layer. Combined with rolling process and heat treatment, bulk metal composites with 9 layers and 11 layers were prepared, respectively. The results of the three-point bending experiment showed that the crack occurred firstly at the outermost side of the multi-layer composites which withstood the tensile stress. Due to the passivation, delamination and bridging of heterogeneous interface in the multi-layer metal composites, the propagation path of crack was greatly extended and more energy was consumed, which showed excellent ability to block the crack propagation.

Key wordsmaraging steel    austenitic stainless steel    multi-layer metal composite    vacuum hot pressing    interface characterization    bending property
收稿日期: 2019-07-24     
ZTFLH:  TG147  
基金资助:国家自然科学基金项目(51472249);国家自然科学基金外国青年学者研究基金项目(51750110515);中国科学院青年创新促进会项目(2017233);中国科学院金属研究所创新项目(2015-ZD04);沈阳市科技计划项目(Z18-0-026)
作者简介: 张 乐,男,1988年生,博士生
MaterialCSiMnCrNiCoTiAlMoPSFe
316L0.0801.02.017.012.0---2.000.0450.0300Bal.
MAS0.003---18.215.11.070.16.420.0040.0023Bal.
表1  马氏体时效钢(MAS)和316L奥氏体不锈钢的化学成分 (mass fraction / %)
图1  异质母材界面结合、拉伸取样及块体多层复合材料示意图
图2  不同变形量时金属复合材料的界面特征
图3  不同变形量下金属复合材料的拉伸性能及断口特征
图4  变形量为20%时金属复合材料界面附近的元素分布图
图5  变形量为20%时金属复合材料界面附近微观组织的EBSD像
图6  图5中界面附近显微组织统计
图7  真空热压后不同层数的块体MAS/316L不锈钢多层复合材料照片
图8  冷轧后多层MAS/316L不锈钢复合材料界面特征的SEM像
图9  不同状态下多层MAS/316L不锈钢复合材料界面附近的硬度分布
图10  不同层数、不同热处理状态金属复合材料的三点弯曲载荷-位移曲线
图11  不同层数、不同热处理状态金属复合材料的弯曲强度
图12  9层和11层金属复合材料在不同状态下的三点弯曲侧面断口形貌的SEM像
图13  三点弯曲特征示意图
图14  多层金属复合材料在弯曲过程中裂纹萌生与扩展模型示意图
图15  多层金属复合材料的完整弯曲曲线特征与预测
[1] Mazínová I, Florian P. Modern Methods of Construction Design [M]. Cham: Springer, 2014: 145
[2] Jackson A P, Vincent J F V, Turner R M. The mechanical design of nacre [J]. Proc. Roy. Soc., 1988, 234B: 415
[3] Xu L P, Peng J T, Liu Y B, et al. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity [J]. ACS Nano, 2013, 7: 5077
[4] Rodrigues J R, Alves N M, Mano J F. Nacre-inspired nanocomposites produced using layer-by-layer assembly: Design strategies and biomedical applications [J]. Mater. Sci. Eng., 2017, C76: 1263
[5] Gerhard E M, Wang W, Li C Y, et al. Design strategies and applications of nacre-based biomaterials [J]. Acta Biomater., 2017, 54: 21
[6] Chen C T, Martin-Martinez F J, Ling S J, et al. Nacre-inspired design of graphene oxide-polydopamine nanocomposites for enhanced mechanical properties and multi-functionalities [J]. Nano Futures, 2017, 1: 011003
[7] She J H, Inoue T, Ueno K. Fabrication and characterization of multilayer alumina-based composites with improved fracture behavior [J]. Mater. Lett., 2000, 42: 155
[8] Bouaziz O, Masse J P, Petitgand G, et al. A novel strong and ductile TWIP/martensite steel composite [J]. Adv. Eng. Mater., 2016, 18: 56
[9] Daneshvar F, Reihanian M, Gheisari K. Al-based magnetic composites produced by accumulative roll bonding (ARB) [J]. Mater. Sci. Eng., 2016, B206: 45
[10] Liu B X, Huang L J, Geng L, et al. Microstructure and tensile behavior of novel laminated Ti-TiBw/Ti composites by reaction hot pressing [J]. Mater. Sci. Eng., 2013, A583: 182
[11] Naseri M, Reihanian M, Borhani E. Bonding behavior during cold roll-cladding of tri-layered Al/brass/Al composite [J]. J. Manuf. Processes, 2016, 24: 125
[12] Leedy K D, Stubbins J F. Copper alloy-stainless steel bonded laminates for fusion reactor applications: Tensile strength and microstructure [J]. Mater. Sci. Eng., 2001, A297: 10
[13] Zu G Y, Wang N, Yu J M, et al. Research on bonding mechanism of composite cold rolling plate of stainless steel/steel [J]. Res. Iron Steel, 2004, 32(4): 32
[13] 祖国胤, 王 宁, 于九明等. 不锈钢/碳钢冷轧复合机理的研究 [J]. 钢铁研究, 2004, 32(4): 32
[14] Xie Z X, Liu Q Y, Yang J H, et al. Effect of microalloying element Mo on dynamic recrystallization of microalloyed steels [J]. J. Iron Steel Res., 2009, 21(1): 33
[14] 谢志翔, 刘清友, 杨景红等. 微量钼对微合金钢动态再结晶的影响 [J]. 钢铁研究学报, 2009, 21(1): 33
[15] Song R B, Xiang J Y, Hou D P, et al. Behavior and mechanism of hot work-hardening for 316L stainless steel [J]. Acta Metall. Sin., 2010, 46: 57
[15] 宋仁伯, 项建英, 侯东坡等. 316L不锈钢热加工硬化行为及机制 [J]. 金属学报, 2010, 46: 57
[16] Zu G Y. Theories and Technologies of Preparation Layered Metal Composite [M]. Shenyang: Northeastern University Press, 2013: 15
[16] 祖国胤. 层状金属复合材料制备理论与技术 [M]. 沈阳: 东北大学出版社, 2013: 15
[17] Mozaffari A, Hosseini M, Manesh H D. Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing [J]. J. Alloys Compd., 2011, 509: 9938
[18] Kümmel F, Haus?l T, H?ppel H W, et al. Enhanced fatigue lives in AA1050A/AA5005 laminated metal composites produced by accumulative roll bonding [J]. Acta Mater., 2016, 120: 150
[19] Kum D W, Oyama T, Wadsworth J, et al. The impact properties of laminated composites containing ultrahigh carbon (UHC) steels [J]. J. Mech. Phys. Solids, 1983, 31: 173
[20] Wadsworth J, Lesuer D R. Ancient and modern laminated composites——From the great pyramid of gizeh to Y2K [J]. Mater. Charact., 2000, 45: 289
[21] Roy S, Nataraj B R, Suwas S, et al. Accumulative roll bonding of aluminum alloys 2219/5086 laminates: Microstructural evolution and tensile properties [J]. Mater. Des., 2012, 36: 529
[22] Yu H L, Lu C, Tieu A K, et al. Annealing effect on microstructure and mechanical properties of Al/Ti/Al laminate sheets [J]. Mater. Sci. Eng., 2016, A660: 195
[23] Jha S C, Delagi R G, Forster J A, et al. High-strength high-conductivity Cu-Nb microcomposite sheet fabricatedvia multiple roll bonding [J]. Metall. Trans., 1993, 24A: 15
[24] Zhang X P, Yang T H, Castagne S, et al. Microstructure; bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot rolling [J]. Mater. Sci. Eng., 2011, A528: 1954
[25] Pardal J M, Tavares S S M, Fonseca M P C, et al. Influence of temperature and aging time on hardness and magnetic properties of the maraging steel grade 300 [J]. J. Mater. Sci., 2007, 42: 2276
[26] Tanhaei S, Gheisari K, Zaree S R A. Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel [J]. Int. J. Miner. Metall. Mater., 2018, 25: 630
[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[4] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[6] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[7] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[8] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[9] 盖逸冰, 唐法威, 侯超, 吕皓, 宋晓艳. 合金化元素对W-Cu体系多类界面特征影响的第一性原理计算[J]. 金属学报, 2020, 56(7): 1036-1046.
[10] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[11] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[12] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
[13] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[14] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.
[15] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.