Please wait a minute...
金属学报  2020, Vol. 56 Issue (3): 311-320    DOI: 10.11900/0412.1961.2019.00181
  研究论文 本期目录 | 过刊浏览 |
γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为
王世宏1,李健1(),葛昕1,2,柴锋1,罗小兵1,杨才福1,苏航1
1. 钢铁研究总院工程用钢研究所 北京 100081
2. 安徽工业大学材料科学与工程学院 马鞍山 243002
Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite
WANG Shihong1,LI Jian1(),GE Xin1,2,CHAI Feng1,LUO Xiaobing1,YANG Caifu1,SU Hang1
1. Department of Structure Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
引用本文:

王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
Shihong WANG, Jian LI, Xin GE, Feng CHAI, Xiaobing LUO, Caifu YANG, Hang SU. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. Acta Metall Sin, 2020, 56(3): 311-320.

全文: PDF(17956 KB)   HTML
摘要: 

采用OM、EBSD、TEM、XRD和拉伸实验等方法,研究了γ-奥氏体/ε-马氏体双相Fe-19Mn-0.0017C (质量分数,%)合金在拉伸变形过程中的组织演变和加工硬化行为。结果表明,Fe-19Mn发生了变形诱导马氏体相变,并且随着变形量的增加,相变过程由以γε相变为主转变为以εα'相变为主。对比分析加工硬化率的变化与相含量的变化,表明εα'相变比γε相变具有更高的加工硬化能力。同时,在变形过程中,ε-马氏体不仅发生了位错滑移,还形成了{101?2}<1?011>ε孪晶,以满足ε-马氏体的变形协调。在γεεα'双重相变引起的相变诱导塑性(TRIP)效应、γ-奥氏体/ε-马氏体/α'-马氏体中的位错滑移,以及ε-马氏体的孪生变形等机制的共同作用下,Fe-19Mn的抗拉强度和总延伸率分别达到722 MPa和31%,显示出良好的强塑性匹配。

关键词 高锰钢变形诱导马氏体相变孪生变形加工硬化    
Abstract

As the excellent combination of strength and ductility, the high manganese steel has been used in the manufacturing field of automobile, liquefied natural gas (LNG) ship and oil and gas exploitation. On the other hand, due to the good damping capacity within a certain Mn content range, it has also been used to make components on the machines to reduce vibration and noise. So high manganese steel is considered to be a structural and functional integrated material with great application prospects. Many factors can affect the mechanical properties and damping capacity, such as chemical composition, grain size and heat treatments. Among these, carbon concentration has a complicated influence on them. For example, a high carbon concentration will improve mechanical properties, but in return deteriorate damping capacity. In order to acquire a material with good damping capacity and suitable strength and ductility, ultralow carbon Fe-19Mn-0.0017C (mass fraction, %) alloy was designed. The microstructural evolution and mechanical properties of the alloy during tensile process were investigated by means of OM, EBSD, TEM, XRD and tension test. The results show that Fe-19Mn shows deformation-induced martensite transformation, which changes from γ-austenite→ε-martensite transformation to ε-martensite→α'-martensite transformation as the amount of deformation increases. Analysis of the strain hardening rate (ln(dσtrue/dεtrue)) combined with the fraction of constituent phases reveals that the transformation of ε-martensite→α'-martensite is more effective in improving work hardening rate than that of γ-austenite→ε-martensite. This is, on one hand, because of the lower strength of ε-martensite which is caused by the lack of carbon solution strengthening; and on the other hand, α'-martensite has higher hardness than ε-martensite, which can impede dislocation movement more effectively. In addition, {101?2}<1?011>ε deformation twins are formed to accommodate deformation of ε-martensite except for dislocation slip during tensile process. The combined action of transformation induced plasticity (TRIP) effects of γ-austenite→ε-martensite→α'-martensite transformation, dislocation slip of γ-austenite/ε-martensite/α'-martensite and {101?2}<1?011>ε deformation twinning makes Fe-19Mn with ultralow carbon concentration have an excellent combination of strength and ductility, whose tensile strength and total elongation can reach 722 MPa and 31%, respectively.

Key wordshigh manganese steel    deformation-induced martensite transformation    twinning deformation    work hardening behavior
收稿日期: 2019-06-03     
ZTFLH:  TG142  
基金资助:国家海军装备预研项目(302030122-0183-001)
作者简介: 王世宏,男,1991年生,博士生
图1  Fe-19Mn的拉伸性能
图2  固溶态试样显微组织
图3  固溶态试样显微组织的TEM像及选区电子衍射(SAED)花样
图4  不同变形量时试样显微组织的EBSD分析
图5  晶界取向差分布
图6  Fe-19Mn变形后显微组织的TEM像及SAED花样
图7  10%变形量时试样显微组织的TEM像及SAED花样
图8  不同变形量试样的XRD谱及各相含量随变形量的变化趋势
图9  基于修正的C-J法的加工硬化行为
[1] De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Mater., 2018, 142: 283
[2] Kim H, Ha Y, Kwon K H, et al. Interpretation of cryogenic-temperature charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4C-(22-26)Mn steels [J]. Acta Mater., 2015, 87: 332
[3] Jee K K, Jang W Y, Baik S H, et al. Damping mechanism and application of Fe-Mn based alloys [J]. Mater. Sci. Eng., 1999, A273-275: 538
[4] Watanabe Y, Sato H, Nishino Y, et al. Training effect on damping capacity in Fe-20 mass% Mn binary alloy [J]. Mater. Sci. Eng., 2008, A490: 138
[5] Lee Y K, Jun J H, Choi C S. Damping capacity in Fe-Mn binary alloys [J]. ISIJ Int., 1997, 37: 1023
[6] Kwon K H, Jeong J S, Choi J K, et al. In-situ neutron diffraction analysis on deformation behavior of duplex high Mn steel containing austenite and ?-martensite [J]. Met. Mater. Int., 2012, 18: 751
[7] De Cooman B C, Kwon O, Chin K G. State-of-the-knowledge on TWIP steel [J]. Mater. Sci. Technol., 2012, 28: 513
[8] Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships [J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141
[9] Scott C, Allain S, Faral M, et al. The development of a new Fe-Mn-C austenitic steel for automotive applications [J]. Rev. Métall., 2006, 103: 293
[10] Pierce D T, Jiménez J A, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation [J]. Acta Mater., 2015, 100: 178
[11] Lee S J, Han J, Lee S, et al. Design for Fe-high Mn alloy with an improved combination of strength and ductility [J]. Sci. Rep., 2017, 7: 3573
[12] Seol J B, Jung J E, Jang Y W, et al. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ε-martensite dual-phase Fe-Mn-C steels [J]. Acta Mater., 2013, 61: 558
[13] Kim J C, Han D W, Baik S H, et al. Effects of alloying elements on martensitic transformation behavior and damping capacity in Fe-17Mn alloy [J]. Mater. Sci. Eng., 2004, A378: 323
[14] Shin S, Kwon M, Cho W, et al. The effect of grain size on the damping capacity of Fe-17 wt%Mn [J]. Mater. Sci. Eng., 2017, A683: 87
[15] Seo Y S, Lee Y K, Choi C S. Effect of deformation on damping capacity and microstructure of Fe-22%Mn-8%Co alloy [J]. Mater. Trans., 2005, 46: 1274
[16] Wang H J, Wang H, Zhang R Q, et al. Effect of high strain amplitude and pre-deformation on damping property of Fe-Mn alloy [J]. J. Alloys Compd., 2019, 770: 252
[17] Choi W S, De Cooman B C. Effect of carbon on the damping capacity and mechanical properties of thermally trained Fe-Mn based high damping alloys [J]. Mater. Sci. Eng., 2017, A700: 641
[18] Oliver J, Jonsson J Y, Talonen J. Method for manufacturing and utilizing ferritic-austenitic stainless steel with high formability [P]. US Pat, 20130032256. 2013
[19] Takaki S, Nakatsu H, Tokunaga Y. Effects of austenite grain size on ε martensitic transformation in Fe-15mass%Mn alloy [J]. Mater. Trans., JIM, 1993, 34: 489
[20] Zhang W N, Liu Z Y, Wang G D. Martensitic transformation induced by deformation and work-hardening behavior of high manganese TRIP steels [J]. Acta Metall. Sin., 2010, 46: 1230
[20] 张维娜, 刘振宇, 王国栋. 高锰TRIP钢的形变诱导马氏体相变及加工硬化行为 [J]. 金属学报, 2010, 46: 1230
[21] Lu F Y, Yang P, Meng L, et al. Microstructure, mechanical properties and crystallography analysis of Fe-22Mn TRIP/TWIP steel after tensile deformation [J]. Acta Metall. Sin., 2013, 49: 1
[21] 鲁法云, 杨 平, 孟 利等. Fe-22Mn TRIP/TWIP钢拉伸过程组织、性能及晶体学行为分析 [J]. 金属学报, 2013, 49: 1
[22] Yang J H, Wayman C M. On secondary variants formed at intersections of ε martensite variants [J]. Acta Metall. Mater., 1992, 40: 2011
[23] Fujita H, Ueda S. Stacking faults and f.c.c. (γ) → h.c.p. (ε) transformation in 18/8-type stainless steel [J]. Acta Metall., 1972, 20: 759
[24] Grunes R L, D'Antonio C, Mukherjee K. A study of α′ martensite nucleation in the iron-15% Mn alloy [J]. Mater. Sci. Eng., 1972, 9: 1
[25] Chen J, Zhang W N, Liu Z Y, et al. Microstructural evolution and deformation mechanism of a Fe-15Mn alloy investigated by electron back-scattered diffraction and transmission electron microscopy [J]. Mater. Sci. Eng., 2017, A698: 198
[26] Xu Z Y. Martensitic Transformation and Martensite [M]. 2nd Ed., Beijing: Science Press, 1999: 133
[26] 徐祖耀. 马氏体相变与马氏体 [M]. 第2版. 北京: 科学出版社, 1999: 133
[27] Nakano J, Jacques P J. Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems [J]. Calphad, 2010, 34: 167
[28] Jun J H, Choi C S. Change in stacking-fault energy with Mn content and its influence on the damping capacity of the austenitic phase in Fe-high Mn alloys [J]. J. Mater. Sci., 1999, 34: 3421
[29] Ma R Z, Wang S L. The γ?ε martensitic transformation in iron-manganese alloys [J]. Trans. Met. Heat Treat., 1982, 3(2): 30
[29] 马如璋, 王世亮. 铁锰合金中γ?ε马氏体相变 [J]. 金属热处理学报, 1982, 3(2): 30
[30] Kikuchi T, Kajiwara S, Tomota Y. Formation process of lamella structures by deformation in an Fe-Mn-Si-Cr-Ni shape memory alloy [J]. J. Phys. IV, 1995, 5: C8-445
[31] Tsuzaki K, Fukasaku S I, Tomota Y, et al. Effect of prior deformation of austenite on the γε martensitic transformation in Fe-Mn alloys [J]. Mater. Trans., JIM, 1991, 32: 222
[32] Li X, Chen L Q, Zhao Y, et al. Influence of original austenite grain size on tensile properties of a high-manganese transformation-induced plasticity (TRIP) steel [J]. Mater. Sci. Eng., 2018, A715: 257
[33] Cina B. A transitional h.c.p. phase in the γα transformation in certain Fe-base alloys [J]. Acta Metall., 1958, 6: 748
[34] Wang Y H, Huang X M, Zhang L, et al. Characterization and simulation of strain-hardening behavior of a cold-rolled dual phase steel of 780 MPa grade by means of modified C-J method and RVE model [J]. Chin. J. Mater. Res., 2017, 31: 801
[34] 王彦华, 黄兴民, 张 雷等. 基于修正C-J法和RVE模型的780 MPa级冷轧双相钢的应变硬化行为 [J]. 材料研究学报, 2017, 31: 801
[35] Kwon K H, Suh B C, Baik S I, et al. Deformation behavior of duplex austenite and ε-martensite high-Mn steel [J]. Sci. Technol. Adv. Mater., 2013, 14: 014204
[36] Yu Y N. Metallography Principle [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2013: 325
[36] 余永宁. 金属学原理 [M]. 第2版. 北京: 冶金工业出版社, 2013: 325
[37] Pramanik S, Gazder A A, Saleh A A, et al. Nucleation, coarsening and deformation accommodation mechanisms of ε-martensite in a high manganese steel [J]. Mater. Sci. Eng., 2018, A731: 506
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[3] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[4] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[5] 王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文. 退火温度对含Nb高锰钢力学和阻尼性能的影响[J]. 金属学报, 2021, 57(12): 1588-1594.
[6] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[7] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[8] 朱恺, 伍翠兰, 谢盼, 韩梅, 刘元瑞, 张香阁, 陈江华. 奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能[J]. 金属学报, 2018, 54(10): 1387-1398.
[9] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[10] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[11] 王晓钢,姜潮,韩旭. Ni单晶体塑性应变的非均匀性与加工硬化*[J]. 金属学报, 2015, 51(12): 1457-1464.
[12] 张盛华,王培,李殿中,李依依. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*[J]. 金属学报, 2015, 51(11): 1306-1314.
[13] 马广财, 付华萌, 王峥, 徐庆亮, 张海峰. 304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块体非晶合金复合材料的制备与性能研究[J]. 金属学报, 2014, 50(9): 1087-1094.
[14] 邓德安, KIYOSHIMA Shoichi. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响*[J]. 金属学报, 2014, 50(5): 626-632.
[15] 陈燕, 伍翠兰, 谢盼, 陈汪林, 肖辉, 陈江华. 机械磨擦制备的Fe-20Mn-3Al-3Si钢表面相变强化层*[J]. 金属学报, 2014, 50(4): 423-430.