Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 626-632    DOI: 10.3724/SP.J.1037.2013.00565
  论文 本期目录 | 过刊浏览 |
退火温度对SUS304不锈钢焊接残余应力计算精度的影响*
邓德安1,2), KIYOSHIMA Shoichi 3)
1) 重庆大学材料科学与工程学院, 重庆400045
2) 哈尔滨工业大学先进焊接与连接国家重点实验室, 哈尔滨100051
3) Computational Mechanics Research Center Inc., Tokyo, 142-0041, Japan
INFLUENCE OF ANNEALING TEMPERATURE ON CALCULATION ACCURACY OF WELDING RESIDUAL STRESS IN A SUS304 STAINLESS STEEL JOINT
DENG Dean 1,2), KIYOSHIMA Shoichi 3)
1) College of Materials Science and Engineering, Chongqing University, Chongqing 400045
2) State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001
3) Computational Mechanics Research Center Inc., Tokyo, 142-0041, Japan
全文: PDF(7033 KB)   HTML
摘要: 

采用热-弹-塑性有限元计算方法模拟了奥氏体不锈钢SUS304在单道堆焊时的温度场和应力场, 探讨了加工硬化和退火软化对焊接残余应力计算结果的影响, 重点考察了数值模型中的退火温度设定值对焊接残余应力计算精度的影响. 数值模拟结果表明: 退火软化效应对纵向残余应力的计算结果有明显影响, 随着退火温度设定值的升高, 纵向残余应力的峰值增大, 而且焊缝及其附近的纵向应力有整体升高的趋势.退火温度对横向残余应力的影响较小.比较计算结果与实验结果可知, SUS304钢的退火温度设定为1000 ℃时, 数值模拟结果与实测结果比较吻合.

关键词 退火效应加工硬化残余应力数值模拟    
Abstract:Austenite stainless steels such as SUS304, owing to their good combination of mechanical properties, corrosion resistance and weldability, are widely used in a variety of industries. In the simulation of welding residual stress of an austenite stainless steel joint, because of the high strain hardening rate and the heating-cooling thermal cycles, both the work hardening phenomenon and the annealing effect have to be taken into account in the material constitutive relations. Though a number of numerical models have included the work hardening by using isotropic rule, kinematic rule or mixed rule, limited models have dealt with the annealing effect. For the steels or alloys with high strain hardening coefficient, neglecting the annealing effect will overestimate the welding residual stresses to a large extent. In this study, the thermal elastic plastic finite element method (T-E-P FEM) was used to simulate welding temperature and residual stresses in a SUS304 steel bead-on joint. In the computational approach based on the T-E-P FEM, a moving heat source with uniform density distribution was used to model the heat input, and a simple model was proposed to consider the annealing effect. Using the developed computational approach, the influences of work hardening and annealing effect on the welding residual stress were clarified. In addition, the effect of annealing temperature on the distribution and magnitude of welding residual stress in the weld zone and its vicinity was examined. The simulated results show that annealing effect has a significant influence on the longitudinal residual stress, and the peak value of longitudinal tensile stress increases with annealing temperature. The longitudinal tensile stresses in the fusion zone and its vicinity also increase with annealing temperature. It seems that the annealing temperature has insignificant influence on the transverse residual stresses. Comparing the simulated results and the measured data, it was found that when the annealing temperature was assumed to be 1000 ℃ for SUS304 steel, the longitudinal residual stresses predicted by the T-E-P FEM generally match the measurements. The present work is helpful for developing more advanced materials model to calculate welding residual stress with high accuracy.
Key wordsannealing effect    work hardening    residual stress    numerical simulation
收稿日期: 2013-09-09     
ZTFLH:  TG441    
基金资助:*国家自然科学基金项目51275544和先进焊接与连接国家重点实验室开放课题基金资助
Corresponding author: DENG Dean, professor, Tel: (023)65102079, E-mail:deandeng@cqu.edu.cn   
作者简介: 邓德安, 男, 1968年生, 教授

引用本文:

邓德安, KIYOSHIMA Shoichi. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响*[J]. 金属学报, 2014, 50(5): 626-632.
DENG Dean, KIYOSHIMA Shoichi. INFLUENCE OF ANNEALING TEMPERATURE ON CALCULATION ACCURACY OF WELDING RESIDUAL STRESS IN A SUS304 STAINLESS STEEL JOINT. Acta Metall Sin, 2014, 50(5): 626-632.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00565      或      https://www.ams.org.cn/CN/Y2014/V50/I5/626

[1] Ueda Y, Murakawa H, Ma N. Welding Deformation and Residual Stress Prevention. Amsterdam: Elsevier, 2012: 1
[2] Lindgren L E. Computational Welding Mechanics. London: Woodhead Publishing, 2007: 1
[3] Deng D, Murakawa H. Comp Mater Sci, 2013; 78: 55
[4] Deng D, Tong Y, Ma N, Murakawa H. Acta Metall Sin (Engl Lett), 2013; 26: 333
[5] Deng D, Murakawa H. Comp Mater Sci, 2008; 43: 681
[6] Deng D, Murakawa H. Comp Mater Sci, 2006; 37: 209
[7] Keavey M, Mark A, Dai H, Withers P J. Proc ASME 2010 Pressure Vessels & Piping Division/K-PVP Conference, Washington, USA: ASME, 2010 (CD-ROM)
[8] Qiao D, Zhang W, Pan T Y, Crooker P, David S, Feng Z. Sci Technol Weld Joining, 2013; 18: 624
[9] Francis J A, Bhadeshia H K D H, Withers P J. Mater Sci Technol, 2007; 23: 1009
[10] Dong P. Sci Technol Weld Joining, 2005; 10: 389
[11] Totten G, Howes M, Inoue T. Handbook of Residual Stress and Deformation of Steel. Materials Park, Ohio: ASM International, 2002: 1
[12] Ma N, Ueda Y. Trans JWRI, 1994; 23: 239
[13] Ueda Y, Murakawa H, Ma N. Trans AMSE, 1996; 118: 576
[14] Deng D, Kiyoshima S. Comp Mater Sci, 2010; 50: 612
[15] Deng D, Kiyoshima S. Acta Metall Sin, 2010; 46: 195
(邓德安, 青岛祥一. 金属学报, 2010; 46: 195)
[16] Deng D. Mater Des, 2013; 49: 1022
[17] Deng D, Kiyoshima S. Comp Mater Sci, 2012; 62: 23
[18] Okagaito T, Ohji T, Miyasaka F. Q J Jpn Weld Soc, 2004; 22: 21
[19] Okagaito T, Ohji T, Miyasaka F. Q J Jpn Weld Soc, 2005; 23: 536
[20] Dupont J N, Marder A R. Weld J, 1995; 74: 406s
[21] Chaboche J L. Int J Plasticity, 2008; 24: 1642
[22] Deng D, Kiyoshima S. Nucl Eng Des, 2010; 240: 688
[23] Leggatt H. Int J Pres Ves Pip, 2008; 85: 144
[1] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[2] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[3] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[4] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[5] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[6] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[7] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[8] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[9] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[10] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[11] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[12] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
[13] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
[14] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[15] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.