|
|
气孔与晶界相互作用的相场模拟 |
孙正阳1,2, 王昱天3, 柳文波1,2( ) |
1 西安交通大学核科学与技术学院 西安 710049 2 西安交通大学陕西省先进核能工程研究中心陕西省先进核能技术重点实验室 西安 710049 3 西安交通大学机械工程学院 西安 710049 |
|
Phase-Field Simulation of the Interaction Between Pore and Grain Boundary |
SUN Zhengyang1,2, WANG Yutian3, LIU Wenbo1,2( ) |
1 School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China 2 Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi'an Jiaotong University, Xi'an 710049, China 3 School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.
Zhengyang SUN,
Yutian WANG,
Wenbo LIU.
Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. Acta Metall Sin, 2020, 56(12): 1643-1653.
[1] |
Rahaman M N. Ceramic Processing and Sintering [M]. New York: Marcel Dekker, 1995: 540
|
[2] |
Turnbull J A. The effect of grain size on the swelling and gas release properties of UO2 during irradiation [J]. J. Nucl. Mater., 1974, 50: 62
doi: 10.1016/0022-3115(74)90061-0
|
[3] |
Ahmed K, Tonks M, Zhang Y F, et al. Particle-grain boundary interactions: A phase field study [J]. Comput. Mater. Sci., 2017, 134: 25
doi: 10.1016/j.commatsci.2017.03.025
|
[4] |
Zhao Y, Zhang H Y, Wei H, et al. A phase field study for scaling rules of grain coarsening in polycrystalline system containing second-phase particles [J]. Acta Metall. Sin., 2013, 49: 981
doi: 10.3724/SP.J.1037.2013.00164
|
[4] |
(赵 彦, 张洪宇, 韦 华等. 相场法研究含第二相颗粒多晶体系的晶粒粗化标度律 [J]. 金属学报, 2013, 49: 981)
doi: 10.3724/SP.J.1037.2013.00164
|
[5] |
Zhou G Z, Wang Y X, Chen Z. Phase-field method simulation of the effect of hard particles with different shapes on two-phase grain growth [J]. Acta Metall. Sin., 2012, 48: 227
doi: 10.3724/SP.J.1037.2011.00609
|
[5] |
(周广钊, 王永欣, 陈 铮. 相场法模拟不同形状的硬质颗粒对两相晶粒长大的影响 [J]. 金属学报, 2012, 48: 227)
doi: 10.3724/SP.J.1037.2011.00609
|
[6] |
Gao Y J, Zhang H L, Jin X, et al. Phase-field simulation of two-phase grain growth with hard particles [J]. Acta Metall. Sin., 2009, 45: 1190
|
[6] |
(高英俊, 张海林, 金 星等. 相场方法研究硬质颗粒钉扎的两相晶粒长大过程 [J]. 金属学报, 2009, 45: 1190)
|
[7] |
Ahmed K, Yablinsky C A, Schulte A, et al. Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics [J]. Model. Simul. Mater. Sci. Eng., 2013, 21: 065005
doi: 10.1088/0965-0393/21/6/065005
|
[8] |
Moelans N, Blanpain B, Wollants P. Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase field simulations [J]. Acta Mater., 2007, 55: 2173
doi: 10.1016/j.actamat.2006.11.018
|
[9] |
Moelans N, Blanpain B, Wollants P. A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles [J]. Acta Mater., 2005, 53: 1771
doi: 10.1016/j.actamat.2004.12.026
|
[10] |
Chang K, Feng W M, Chen L Q. Effect of second-phase particle morphology on grain growth kinetics [J]. Acta Mater., 2009, 57: 5229
doi: 10.1016/j.actamat.2009.07.025
|
[11] |
Hötzer J, Rehn V, Rheinheimer W, et al. Phase-field study of pore-grain boundary interaction [J]. J. Ceram. Soc. Jpn., 2016, 124: 329
doi: 10.2109/jcersj2.15266
|
[12] |
Kundin J, Sohaib H, Schiedung R, et al. Phase-field modelling of pores and precipitates in polycrystalline systems [J]. Model. Simul. Mater. Sci. Eng., 2018, 26: 065003
doi: 10.1088/1361-651X/aacb94
|
[13] |
Nichols F A. Theory of grain growth in porous compacts [J]. J. Appl. Phys., 1966, 37: 4599
doi: 10.1063/1.1708102
|
[14] |
Brook R J. Pore-grain boundary interactions and grain growth [J]. J. Am. Ceram. Soc., 1969, 52: 56
doi: 10.1111/jace.1969.52.issue-1
|
[15] |
Riedel H, Svoboda J. A theoretical study of grain growth in porous solids during sintering [J]. Acta Metall. Mater., 1993, 41: 1929
doi: 10.1016/0956-7151(93)90212-B
|
[16] |
Petrishcheva E, Renner J. Two-dimensional analysis of pore drag and drop [J]. Acta Mater., 2005, 53: 2793
doi: 10.1016/j.actamat.2005.02.040
|
[17] |
Klinger L, Rabkin E, Shvindlerman L S, et al. Grain growth in porous two-dimensional nanocrystalline materials [J]. J. Mater. Sci., 2008, 43: 5068
doi: 10.1007/s10853-008-2678-y
|
[18] |
Fan D, Chen L Q. Computer simulation of grain growth using a continuum field model [J]. Acta Mater., 1997, 45: 611
doi: 10.1016/S1359-6454(96)00200-5
|
[19] |
Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling of microstructure evolution [J]. Calphad, 2008, 32: 268
doi: 10.1016/j.calphad.2007.11.003
|
[20] |
Krivilyov M D, Mesarovic S D, Sekulic D P. Phase-field model of interface migration and powder consolidation in additive manufacturing of metals [J]. J. Mater. Sci., 2017, 52: 4155
doi: 10.1007/s10853-016-0311-z
|
[21] |
Lin M Z, Zhang R J, Fang W, et al. Phase field simulation of sintering process in biphasic porous material [J]. Acta Metall. Sin., 2012, 48: 1207
doi: 10.3724/SP.J.1037.2012.00353
|
[21] |
(刘明治, 张瑞杰, 方 伟等. 相场法模拟两相多孔组织烧结 [J]. 金属学报, 2012, 48: 1207)
doi: 10.3724/SP.J.1037.2012.00353
|
[22] |
Chen Y, Kang X H, Xiao N M, et al. Phase field modelling of grain growth in polycrystalline material [J]. Acta Phys. Sin., 2009, 58: 124
|
[22] |
(陈 云, 康秀红, 肖纳敏等. 多晶材料晶粒生长粗化过程的相场方法模拟 [J]. 物理学报, 2009, 58: 124)
doi: 10.7498/aps.58.124
|
[23] |
Jing X N, Ni Y, He L H, et al. 2-D phase-field simulation of pore evolution in sintering ceramics [J]. J. Inorg. Mater., 2002, 17: 1078
|
[23] |
(景晓宁, 倪 勇, 何陵辉等. 陶瓷烧结过程孔隙演化的二维相场模拟 [J]. 无机材料学报, 2002, 17: 1078)
|
[24] |
Deng J. A phase field model of sintering with direction-dependent diffusion [J]. Mater. Trans., 2012, 53: 385
doi: 10.2320/matertrans.M2011317
|
[25] |
Sun Z Y, Yang C, Liu W B. Phase-field simulations of the sintering process of uranium dioxide [J]. Acta Metall. Sin., 2020, 56: 1295
|
[25] |
(孙正阳, 杨 超, 柳文波. UO2烧结过程的相场模拟 [J]. 金属学报, 2020, 56: 1295)
|
[26] |
Lu D, Jiang P, Xu Z Z. Solid State Physics [M]. 2nd Ed., Shanghai: Shanghai Scientific and Technical Publishers, 2010: 364
|
[26] |
(陆 栋, 蒋 平, 徐至中. 固体物理学 [M]. 第2版. 上海: 上海科学技术出版社, 2010: 364)
|
[27] |
Chen L Q, Fan D N. Computer simulation model for coupled grain growth and Ostwald ripening—Application to Al2O3-ZrO2 two-phase systems [J]. J. Am. Ceram. Soc., 1996, 79: 1163
doi: 10.1111/jace.1996.79.issue-5
|
[28] |
Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
doi: 10.1016/0001-6160(61)90182-1
|
[29] |
Moelans N, Blanpain B, Wollants P. Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems [J]. Phys. Rev., 2008, 78B: 024113
|
[30] |
Hsueh C H, Evans A G, Coble R L. Microstructure development during final/intermediate stage sintering—I. Pore/grain boundary separation [J]. Acta Metall., 1982, 30: 1269
doi: 10.1016/0001-6160(82)90145-6
|
[31] |
Ahmed K, Allen T, El-Azab A. Phase field modeling for grain growth in porous solids [J]. J. Mater. Sci., 2016, 51: 1261
doi: 10.1007/s10853-015-9107-9
|
[32] |
Ahmed K, Pakarinen J, Allen T, et al. Phase field simulation of grain growth in porous uranium dioxide [J]. J. Nucl. Mater., 2014, 446: 90
doi: 10.1016/j.jnucmat.2013.11.036
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|