金属学报, 2020, 56(12): 1643-1653 DOI: 10.11900/0412.1961.2020.00120

气孔与晶界相互作用的相场模拟

孙正阳1,2, 王昱天3, 柳文波,1,2

1 西安交通大学核科学与技术学院 西安 710049

2 西安交通大学陕西省先进核能工程研究中心陕西省先进核能技术重点实验室 西安 710049

3 西安交通大学机械工程学院 西安 710049

Phase-Field Simulation of the Interaction Between Pore and Grain Boundary

SUN Zhengyang1,2, WANG Yutian3, LIU Wenbo,1,2

1 School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China

2 Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi'an Jiaotong University, Xi'an 710049, China

3 School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China

通讯作者: 柳文波,liuwenbo@xjtu.edu.cn,主要从事核燃料和核材料的多尺度模拟研究

责任编辑: 肖素红

收稿日期: 2020-04-16   修回日期: 2020-06-04   网络出版日期: 2020-12-11

基金资助: 国家自然科学基金委员会与中国工程物理研究院联合基金项目.  U1830124
国家自然科学基金青年项目.  11705137
中国博士后科学基金项目.  2019M663738
清华大学新型陶瓷与精细工艺国家重点实验室项目.  KF201713

Corresponding authors: LIU Wenbo, associate professor, Tel: (029)82668948, E-mail:liuwenbo@xjtu.edu.cn

Received: 2020-04-16   Revised: 2020-06-04   Online: 2020-12-11

Fund supported: NSAF Joint Fund.  U1830124
National Natural Science Foundation of China.  11705137
China Postdoctoral Science Foundation.  2019M663738
State Key Laboratory of New Ceramic and Fine Processing Tsinghua University.  KF201713

作者简介 About authors

孙正阳,男,1998年生,本科生

摘要

对现有的气孔与晶界相互作用的相场模型进行改进,提出了新形式的自由能密度函数,并采用了张量形式的扩散系数。分析了相场模型中唯象参数的选择依据,并讨论了模型中界面能和界面宽度等物理参数的影响因素。气孔和晶界相互作用的相场模拟结果表明:晶界的曲率是晶界移动的动力,而气孔是晶界移动的阻力;当气孔施加的最大阻力大于等于晶界移动的动力时,气孔会随晶界一起运动;而当气孔施加的最大阻力小于晶界移动的动力时,气孔与晶界分离。若气孔与晶界未发生分离,体系的演化将由晶界主导转变为气孔主导,演化速率显著下降。含气孔UO2多晶体系的晶粒生长的相场模拟结果表明:气孔率越大,晶粒生长速率越慢;UO2平均晶粒直径与时间成幂函数关系,幂指数随气孔率的增大而增大。

关键词: 相场模拟 ; 气孔 ; 晶界 ; 晶粒生长 ; 扩散

Abstract

The grain boundary (GB) and average grain size considerably affect the properties of materials, such as the fracture strength, dielectric constant, and thermal conductivity. For instance, when subjected to irradiation at 1750 ℃, the swelling of the UO2 pellets and the release of fission gas from them decrease significantly with the increasing average grain size. However, several second-phase particles, such as pores, are inevitably introduced into a material during the solid-phase sintering or neutron radiation processes. Therefore, studying the interaction between the pores and GBs is considerably important. In this study, a phase-field model of the interaction between the pores and GBs is developed. Subsequently, the free-energy density function was modified, where the diffusion coefficient was incorporated in the tensor form. In addition, the selection of the phenomenological parameters, such as the coefficient in the free-energy density function of the phase-field model, was analyzed, and the influencing factors of interface energy and interface width were discussed. The phase-field model simulation results of the interaction between the pores and GBs show that the curvature of GB was the major driving force associated with the movement of GB and that pores resisted the movement of GB. Accordingly, the pores moved together with the GBs when the maximum pinning force exerted by the pores was larger than the driving force produced by the curvature of GB; however, the pores and GBs separated in the opposite case, during which the GB moved much faster than pores. The results of the phase-field simulation of the grain growth of the pore-containing UO2 show that the grain growth speed decreases with the increasing porosity. The average grain size of UO2 is a power function of time, the exponent of which increases with the increasing porosity.

Keywords: phase field simulation ; pore ; grain boundary ; grain growth ; diffusion

PDF (2044KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟. 金属学报[J], 2020, 56(12): 1643-1653 DOI:10.11900/0412.1961.2020.00120

SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary. Acta Metallurgica Sinica[J], 2020, 56(12): 1643-1653 DOI:10.11900/0412.1961.2020.00120

平均晶粒尺寸不仅对陶瓷材料的性能(如断裂强度、电击穿强度、介电常数和导热系数等)产生重要的影响[1],而且对陶瓷材料在极端条件下的服役性能有显著影响。例如,UO2陶瓷型核燃料在2023 K的高温下辐照后,燃料芯块的肿胀和裂变气体释放效应随着平均晶粒尺寸增大而显著下降,这说明大晶粒尺寸的UO2有更好的抗辐照性能[2]。此外,提高平均晶粒尺寸对于提高UO2的密度也至关重要[3]。研究[1,4~9]表明,第二相颗粒(如气孔或者析出相)会通过“切过”或者“绕过”机制与晶界相互作用,严重阻碍晶界等界面的运动,从而影响材料的晶粒生长速率和平均晶粒尺寸。然而,固相烧结、中子辐照等过程中不可避免地会在材料中引入大量的气孔等第二相粒子。因此,研究气孔与晶界的相互作用对于深入理解固相烧结、中子辐照等条件下的组织演变有重要意义。

目前,国内外学者对气孔与晶界的相互作用已开展了一些研究,建立了一些模型[3,8~12]。根据第二相是否可以移动,这些模型可以分为2类:一类认为第二相(如沉淀或杂质)是“不可移动”的,它们完全固定在晶界上并阻碍晶界的移动[8~10];而另一类认为第二相(如气泡或孔隙)是“可移动”的,在扩散机制的作用下,气泡或孔隙可以随着晶界的移动而被拖动,在一定条件下晶界甚至可以与气孔脱离[3,11,12]。高英俊等[6]利用“不可移动”模型研究了极限晶粒尺寸与第二相颗粒尺寸、第二相体积分数之间的关系。与第二相“不可移动”的模型相比,“可移动”第二相与晶界相互作用的模型要更加复杂,因为除了要考虑晶界的移动之外,还要考虑由于各种扩散效应引起的第二相的移动。Nichols[13]和Brook[14]建立了“可移动”第二相的模型,在模型中假设整个体系是各向同性的,第二相可以沿着界面做刚性移动,以此为基础又陆续报道了更多复杂的模型[15~17]。然而,这些早期的可移动第二相模型都采用了尖锐界面假设,即假设晶粒和第二相之间的界面宽度为零。为了得到界面位置和晶粒生长情况,在模拟过程中需要对尖锐界面进行跟踪,这导致对于三维体系或者任意界面形状的复杂体系而言,模型的数值求解将变得十分繁琐。

相场理论[18~23]通过引入相场变量和扩散界面的方式有效地克服了尖锐界面模型的上述缺点。相场变量在不同取向的晶粒和气孔内部的取值不同,而在晶粒和气孔之间的扩散界面上的取值连续变化。相场模型无需对界面进行跟踪,利用相场变量的取值就可以快速地得到晶粒尺寸和界面的位置。基于相场理论,Ahmed等[3]模拟了第二相颗粒与晶界的相互作用,并研究了颗粒尺寸和形状对晶界移动速率的影响。为了更准确地描述扩散机制的方向,Deng[24]提出了采用张量形式的扩散系数的相场模型。最近,本文作者[25]研究了扩散机制对含气孔UO2晶粒烧结过程产生的影响。然而,上述工作中气孔与晶界的相互作用有待进一步深入分析。

本工作改进了已有的相场模型,建立了新型的自由能密度函数,并采用了张量形式的扩散系数。首先对相场模型中的参数和实际材料界面参数的对应关系进行分析,然后利用新模型对气孔与晶界的相互作用进行模拟,并深入分析晶界和气孔分离的条件,最后以含气孔多晶UO2为例,研究气孔率对其晶粒生长的影响。

1 相场模型

1.1 相场变量

本工作基于相场理论,建立研究气孔与晶界相互作用的模型。模型中引入取向场变量ηiα (i=1, 2, …, p)、ηβ和浓度场变量C分别来描述p个不同取向的晶粒和气孔相。其中,ηiαηβ为非保守型相场变量,C为保守型相场变量。ηiα用来描述不同晶粒的取向,在一个特定取向的晶粒中只有一个ηiα取值的绝对值为1,其余均为0;ηβ用来描述气孔,在气孔相内部ηβ取值的绝对值为1,气孔相外部ηβ取值为0。C用来描述物质的浓度,在晶粒相内部C的取值为Cα,气孔相内部C的取值为Cβ,本工作选取Cα=0.99,Cβ=0.01。图1是相场变量在2个晶粒和1个气孔组成的体系中取值的示意图。

图1

图1   相场模型示意图

Fig.1   Schematic of phase field model (C—concentration field variable; Cα—concentration in grain; Cβ—concentration in pore; η1α, η2α—orientation field variable of grains 1, 2, respectively; ηβ—orientation field variable of pore )


相场变量ηiαηβC在不同取向的晶粒以及晶粒与气孔之间是连续变化的,即相场变量在晶界和相界上具有一个扩散型边界[19]。例如:在晶粒1和晶粒2的晶界处,η1α的取值从1连续变为0,η2α的取值从0连续变为1;在晶粒1和气孔的相界处,η1α的取值从1连续变为0,ηβ的取值从0连续变化为1,C的取值从Cα连续变化为Cβ

1.2 自由能密度函数的构造

根据Ginzburg-Landau理论[26],当相场变量在空间中变化时,体系的总自由能密度F包含与相场变量有关的体自由能密度和与相场变量梯度有关的扩散界面自由能密度。因此,F的形式如下:

F=vfηiα, ηβ, C+κα2i=1pηiα2+
κβ2ηβ2+κc2C2d3r

式中,等号右边积分号内的第一项f为体自由能密度函数,后面三项为梯度自由能密度;κακβκc为梯度参数;r为位置坐标。

f应保证满足以下的极值条件:当相场变量(C, η1α, η2α, …, ηpα, ηβ)=(Cα, ±1, 0, …, 0, 0),(Cα, 0, ±1, …, 0, 0),…,(Cα, 0, 0, …, ±1, 0)和(Cβ, 0, 0, …, 0, ±1)时,f取到2(p+1)个的极小值。换句话说,p个不同取向的晶粒以及气孔是f的势阱。为满足这个极值条件,本工作在Chen等[27]提出的经典相场模型的体自由能密度函数基础上,构造了新的体自由能密度函数fnew,其形式如下:

fnewηiα, ηβ, C=A(C-Cα)2C-Cβ2+Dα4C-Cβ4+          
i=1p-γα2C-Cβ2(ηiα)2+δα4(ηiα)4+           
Dβ4C-Ca4-γβ2C-Cα2(ηβ)2+                    
δβ4(ηβ)4+ε2i=1p(ηiα)2(ηβ)2+i=1pj>ip(ηiα)2(ηjα)2

式中,ADαγαδαDβγβδβε均为唯象参数。模拟时需选择一组合适的唯象参数以保证fnew满足极值条件。下文1.4节将对极值条件进行详细讨论。

1.3 相场方程的演化

ηiα、ηβC的演化方程分别为Allen-Cahn方程和Cahn-Hilliard扩散方程[28]

ηiαt=-LαδFδηiα=-Lαfnewηiα-κα2ηiα
(i=1, 2, , p)
ηβt=-LβδFδηβ=-Lβfnewηβ-κβ2ηβ
Ct=MδFδC

式中,t为时间;LαLβM为动力学参数,M与张量形式的表面扩散系数Ds有关:

M=νmDsRT

式中,νm为摩尔体积;R为气体常数;T为温度。

本工作中采用的张量形式的Ds如下:

Ds=DsC21-C2TsTs=I-nsnsns=CC

式中,Ds是标量形式的表面扩散系数;Ts是表面投影张量,它的作用是保证表面扩散仅发生在晶粒与气孔接触表面的切线方向;I为单位张量;ns为表面单位法向量。

本工作基于有限差分方法编写程序对上述模型进行模拟,Allen-Cahn方程和Cahn-Hilliard方程的求解采用显式Euler算法,Allen-Cahn方程中Laplace项的求解采用了五点差分法。

本工作引入一个可视化变量φ[18],结合扩散界面的特征可知:在晶粒内部φ=1;在扩散界面处0<φ<1;在气孔内部φ=0。通过将φ的不同数值转化为不同的颜色,即可直观地展示晶粒的生长演化过程。

φ=i=1pηiα2

1.4 模型中唯象参数的选择

为了保证fnew在不同取向晶粒内部和气孔内部取得相同极小值,需要选择一组合适的唯象参数。为了便于讨论,需要将式(2)拆分为3部分:f1f2f3,令fnew=f1+f2+f3,即:

f1=A(C-Cα)2C-Cβ2f2=Dα4C-Cβ4+i=1p-(γα2)C-Cβ2(ηiα)2+δα4ηiα4+Dβ4C-Ca4-(γβ2)C-Cα2(ηβ)2+δβ4(ηβ)4f3=ε2i=1p(ηiα)2(ηβ)2+i=1pj>ip(ηiα)2(ηjα)2

再令f2=gα+gβgαgβ分别为:

gαC, ηiα=Dα4C-Cβ4+i=1p-(γα2)C-Cβ2
(ηiα)2+δα4(ηiα)4                
gβC, ηβ=Dβ4C-Ca4-(γβ2)C-Cα2(ηβ)2+δβ4(ηβ)4                               

假设p=1,此时函数gα可简化为gα(C, ηα)=Dα(C-Cβ)4/4-γα(C-Cβ)2(ηα)2/2+δα(ηα)4/4。二元函数gα(C, ηα)在C=Cα、|ηα|=1取得极小值的必要条件是2个偏导数均为0,即:

gCηα=1C=Cα=DαC-Cβ3-γαC-Cβ(ηα)2=0
gηαηα=1C=Cα=-γαC-Cβ2ηα+δα(ηα)3=0

求解上述2个方程可得唯象参数Dαγαδα满足的关系如下:

DαCα-Cβ2=γα ,    γαCα-Cβ2=δα

根据对称性可知,唯象参数Dβγβδβ满足的关系如下:

DβCβ-Cα2=γβ , γβCβ-Cα2=δβ

将上述关系代入函数gαgβ,得到:

gαC, ηα=C-CβCα-Cβ2-ηα22
gβC, ηβ=C-CαCβ-Cα2-ηβ22

此时,函数gαgβ分别在(ηα)2=[(C-Cβ)/(Cα-Cβ)]2,(ηβ)2=[(C-Cα)/(Cβ-Cα)]2条件下取到极小值0,但此条件并不满足fnew的极值条件。根据极值条件,fnew应该只在C=Cα且|ηα|=1或C=Cβ且|ηβ|=1处取到极小值。因此需要对f2=gα+gβ的极值条件进行限制。

为了限制f2=gα+gβ的极值条件,引入f1=A(C-Cα)2·(C-Cβ)2A是一个大于0的常数。可以证明,f1是一个双势阱函数,分别在C=CαC=Cβ处取得极小值0。因此f1+f2的极值范围缩小到C=Cα且|ηα|=1或C=Cβ且|ηβ|=1。

上述对f1+f2的讨论都是基于p=1的假设,但是在通常的情况下p>1。此时不难证明f1+f2的值在C=Cα,|ηiα|=1 (i=1, 2, 3, …, p)时最小。例如:当p=2时,g(C=Cα, η1α=1, η2α=1)=α/4<g(C=Cα, η1α=1, η2α=0)=g(C=Cα, η1α=0, η2α=1)=0,这显然不符合fnew的极值条件。为解决此问题,f3引入了取向场变量的交叉项,交叉项前面的参数ε应满足以下条件[18]

ε>δα/2

因此,fnew=f1+f2+f3满足极值条件的充分必要条件如下:

DαCα-Cβ2=γα ,   DβCβ-Cα2=γβγαCα-Cβ2=δα ,    γβCβ-Cα2=δβA>0,  ε>δα/2

2 模型分析

在本工作研究的体系中共有2种界面:一种是2个晶粒接触位置附近的晶界,另一种是晶粒相与气孔相接触位置附近的相界。根据Ginzburg-Landau理论[26],体系中扩散界面的界面宽度和能量密度与自由能密度函数中梯度项参数相关。晶界的能量密度σgb在二维形式下的计算表达式[27]为:

σgb=-Δfnewηiα, ηjα, C+κα2dηiαdx2+
κα2dηjαdx2+κc2dCdx2dx
Δfnewηiα, ηjα, C=fnew(ηiα, ηjα, C)-fnew(ηi,eα, ηj,eα, Cα)-
        (C-Cα)fnewCηi,eα,ηj,eα,Cα

式中,ηi,eαηj,eα分别为ηiαηjα在平衡位置的取值;fnew (ηi,eα, ηj,eα, Cα)为fnew在平衡位置的极小值。

相界的能量密度σint在二维形式下的计算表达式[27]为:

σint=-Δfnewηiα, ηβ, C+κα2dηiαdx2+
κβ2dηβdx2+κc2dCdx2dx
Δfnewηiα, ηβ, C=fnew(ηiα, ηβ, C)-fnew(ηi,eα, ηeβ, Cα)-
         (C-Cα)fnewCηi,eα,ηeβ,Cα

利用有限差分数值方法研究晶界参数、相界参数和梯度参数的关系。模拟区域的大小为40×40格点,模拟区域的边界条件为:左右为非周期性边界,上下为周期性边界。模拟选取的无量纲参数如表1所示,模拟采用“固定变量法”,即模拟某一个梯度参数的影响时,其余的梯度参数保持初始值不变。

表1   模拟选取的无量纲参数

Table 1  Dimensionless parameters in simulation

ParameterSymbolValue
Phenomenological parameterA2.5
Dα, Dβ1.08
γα, γβ1.04
ε3
Kinetic parameterLα, Lβ1
M5
Gradient parameterκα, κβ, κc2
Space stepΔx1
Time stepΔt0.001

Note:M corresponds to the scalar form of M

新窗口打开| 下载CSV


2.1 晶界宽度及晶界能量

为研究晶界参数与梯度参数的关系,将模拟区域等分为左右2份,分别表示2个不同取向的晶粒。左右2侧相场变量的初始值分别为:左侧η1α=1,η2α=0,C=Cα,右侧η1α=0,η2α=1,C=Cα。待体系演化到稳态时,做出晶界附近相场变量的变化函数,如图2所示。其中,图2a为ηiα、ηjα的变化函数,图2b为C的变化函数。可以看出,κα的取值对η1αη2α影响显著,κα越大η1αη2α变化越平缓,晶界宽度越大,καC影响很小。根据对称性,κβηβ具有相同的影响。

图2

图2   不同梯度参数κα下取向场变量η1α、η2α和浓度场变量C的平衡取值

Fig.2   Equilibrium profiles for phase field variables at different κα(a) orientation field variables η1α, η2α(b) concentration field variable C


图3σgb和晶界宽度lκα平方根的线性拟合。可以看出,σgblκα平方根成正比。Moelans等[29]利用数值方法研究了单相相场模型(体系中不含第二相气孔或者颗粒)晶界宽度和能量密度与梯度项参数的关系,模拟结果表明晶界宽度和能量密度与梯度项参数的平方根成正比,这与本工作的模拟结果基本一致。然而,本工作中的3类梯度项参数的平方根对lσgb影响的贡献并不完全相同。

图3

图3   晶界能量密度σgb和晶界宽度lκα1/2的线性拟合

Fig.3   Linear fitting curves of energy density and width of grain boundary vsκα1/2 (l—width of grain boundary, σgbenergy density of grain boundary)


2.2 相界宽度及相界能量

为研究相界参数与梯度参数的关系,将模拟区域等分为左右2份,分别表示晶粒相和气孔相。左右2侧相场变量的初始值分别为:左侧η1α=1,ηβ=0,C=Cα,右侧η1α=0,ηβ=1,C=Cβ

图4为在不同κc下体系达到平衡状态时相界附近相场变量的变化函数。其中,图4a为η1αηβ的变化函数,图4b为C的变化函数。图5表示相界能量密度与κακβκc 3者平方根的线性拟合。

图4

图4   不同梯度参数κc下相场变量的平衡取值

Fig.4   Equilibrium profiles for phase field variables at different κc(a) orientation field variables η1α, ηβ(b) concentration field variable C


图5

图5   相界能量密度σintκα1/2 (κβ1/2)κc1/2的线性拟合

Fig.5   Linear fitting curves of energy density of phase boundary σintvsκα1/2, κβ1/2 or κc1/2


对比图2a和图4a可以看出,κα1/2ηiα在扩散界面处的取值有较大影响,根据方程(3)、(4)的对称性可知,κβ1/2ηβ在扩散界面处的取值有较大影响;结合图2b和图4b分析可得,κcC在扩散界面处的取值有较大影响。进一步分析图4a可知:κακβ相同的情况下改变κc,相界界面宽度不变且与晶界界面宽度相同。对比图3图5可以看出,晶界能量密度和晶界宽度与κα1/2成正比。相界能量密度与κα1/2κβ1/2κc1/2均成正比,其与κα1/2κβ1/2的比例系数相同且略小于与κc1/2的比例系数。

3 气孔与晶界的相互作用

3.1 晶界曲率对其移动速率的影响

为研究自由晶界(不含气孔)的移动规律,本工作构建一个大小为75×75格点的模拟区域,以模拟区域中心为圆心,做一个半径为20格点的圆将模拟区域分为2部分,圆内和圆外分别表示2个不同取向的晶粒。圆内相场变量的初始值为ηiα=1,ηjα=0,C=Cα,圆外相场变量的初始值为ηiα=0,ηjα=1,C=Cα。本部分模拟中选取无量纲参数M=25,其余参数见表1

图6是这个双晶粒体系演化的相场模拟。其中黄色部分表示晶粒,蓝绿色圆圈表示晶界。如图所示,随着时间的延长,圆形晶界不断朝向圆心移动,直径逐渐减小直到消失,2个晶粒最终完全“融合”成一个晶粒。图7是晶界移动速率和中心晶粒尺寸随时间演化的动力学曲线。可以看出,随着时间的延长,圆形晶粒的面积减小,晶界的曲率增加,晶界移动速率逐渐增大,这一结果与Hsueh等[30]的理论研究基本一致。

图6

图6   双晶粒体系演化的相场模拟

Color online

(a) 1×104 step (b) 3×104 step (c) 4×104 step (d) 5×104 step

Fig.6   Phase-field simulation results of the microstructure evolution of two grain system


图7

图7   晶界移动速率和中心晶粒尺寸随时间演化的动力学曲线

Fig.7   Dynamic curves of grain boundary velocity and central grain size vs dimensionlesstimescale td


3.2 气孔与晶界的相互作用

本工作通过向模拟区域中添加气孔以研究气孔与晶界的相互作用,每个气孔的半径为5个格点。采用与3.1节相同的模拟区域和参数。在气孔相内部,ηβ=1,C=Cβ

3.2.1 移动晶界与气孔的分离

图8是在晶界附近引入单个气孔后体系演化的相场模拟。其中黄色区域表示晶粒,绿色区域表示晶界,蓝色区域表示气孔。可以看出,气孔附近的晶界与气孔结合在一起,无法正常移动。气孔的引入会阻碍晶界的移动并导致体系演化速率减慢。图9展示了双气孔与晶界体系演化的相场模拟。可以看出,在演化过程中气孔和晶界发生了分离现象。

图8

图8   单气孔体系演化的相场模拟

Color online

(a) 1×104 step (b) 3×104 step (c) 4×104 step (d) 5×104 step

Fig.8   Phase-field simulation results of the microstructure evolution of one pore system


图9

图9   双气孔体系演化的相场模拟

Color online

(a) 1×104 step (b) 5×104 step (c) 7.5×104 step (d) 10×104 step

Fig.9   Phase-field simulation results of the microstructure evolution of two pore system


Ahmed等[3]在对颗粒与晶界相互作用的模拟研究中,也发现了存在颗粒与晶界结合在一起运动和颗粒与晶界发生分离2种情况。进一步证明了相场模型中自由晶界(无气孔)的移动速率vb和气孔移动速率vp分别为[31]:

vb=-σgbMbκb
vp=σintDsνmlsRTs2κs

式中,Mb为晶界迁移系数;κb为晶界曲率;ls为气孔与晶粒接触表面的宽度;s2为气孔与晶粒接触表面的Laplace算子;κs为相界曲率。式(24)中等号右边的负号表示vb的符号与κb的符号相反。在这里正负号的定义为:正号表示朝向界面的外(凸)侧,负号表示朝向界面的内(凹)侧。

式(24)和(25)可以看出,当体系的物理参数σgbMb不变时,vbκb成正比;当气孔的形状(∇s2κs)保持不变时,vpDs成正比。一般情况下,vb远大于vp,因此气孔如同第二相钉扎颗粒[3]一样,会严重阻碍晶界的运动。

结合这一理论对模拟结果进行分析:晶界运动是受曲率驱动的,κb为晶界运动提供了一个动力FD,这个动力与κb成正比,即FDκb。而气孔作为阻碍晶界运动的因素,对晶界施加了阻力,假设这个阻力的最大值为FZmax,当FZmaxFD,晶界与气孔钉扎在一起运动,当FZmax<FD时,晶界与气孔便会分离[9]。这便是气孔与晶界的分离条件。

利用分离条件可以解释图9中观察的现象:在演化初期,晶界半径较大,曲率较小,此时FD<FZmax,晶粒和气孔结合在一起。随着时间的演化,气孔上下的晶界逐渐朝小晶粒的中心位置运动,这导致气孔附近的κb增大,FD也随之增大,最终超过了FZmax=FD这个临界,满足FZmax<FD的条件,晶界气孔发生分离。虽然双气孔体系中晶粒和气孔发生了分离现象,但是相同模拟条件下该体系演化的速率仍然小于单气孔体系,这表明气孔数目的增加会降低晶粒的生长速率。

3.2.2 气孔对移动晶界的钉扎

图10是四气孔体系演化的相场模拟。可以看出,当体系演化时间步长为10×104 step时,远离气孔的晶界曲率已经变为0,而靠近气孔的晶界曲率又不足以克服气孔的阻力,因此晶界被气孔牢牢钉扎,只能随着气孔一起缓慢移动(气孔并非不动,而是以非常缓慢的速率移动),在这种情况下,体系的演化速率主要取决于气孔的移动速率,因此演化速率会显著减慢。

图10

图10   四气孔体系演化的相场模拟

Color online

(a) 1×104 step (b) 2×104 step (c) 10×104 step (d) 25×104 step

Fig.10   Phase-field simulation results of the microstructure evolution of four pore system


在气孔和晶界的相互作用过程中,气孔既可能与晶界一起运动,也可能与晶界分离,这取决于气孔附近晶界的曲率大小,若体系中靠近气孔的晶界曲率较大,足以克服气孔的最大阻力时,体系的演化将为晶界主导,发生气孔与晶界分离的现象;若体系中靠近气孔的晶界曲率很小,不足以克服气孔最大阻力时,体系的演化将由晶界主导变为气孔主导,而气孔的移动速率远远小于晶界的移动速率,因此体系演化速率显著减慢,不会发生气孔与晶界相互分离的现象。但上述2种情况中,气孔都会阻碍其附近晶界的运动。

3.3 含气孔多晶UO2的晶粒生长

对2000 K下含气孔多晶UO2体系的晶粒生长过程进行了模拟。模拟区域为256×256格点,区域内随机产生128个不同取向的晶粒。模拟中时间步长Δt,空间步长Δx和唯象参数ADαDβγαγβδαδβε表1,动力学参数L=10,M=25,由于含气孔UO2多晶体系2000 K下σint=0.6 J/m2σgb=0.3 J/m2 [32],为了保证σint/σgb=2.0的条件,选取κα=κβ=2,κc=8。

图11为气孔率fp=2%时含气孔多晶UO2体系演化的相场模拟。可以看出,由于含气孔附近的晶界受到气孔的阻碍,移动非常缓慢,而未与气孔发生作用的晶界移动相对较快。由于晶界的移动,小尺寸晶粒逐渐被大尺寸晶粒吞并,晶粒的总数目下降,晶粒平均面积增加。进一步分析发现,该模拟条件下未发现晶界与气孔相分离的现象,晶内的气孔对自由晶界的移动有很强的阻碍作用(如椭圆形区域内的气孔)。随着模拟时间的延长,很多原来处于晶界线周围的气孔移动到三叉晶界处,这主要是由于气孔的移动速率远远小于晶界的移动速率。

图11

图11   气孔率fp=2%时含气孔多晶UO2演化的相场模拟

Color online

(a) 0.1×104 step (b) 0.5×104 step (c) 1×104 step (d) 2×104 step

Fig.11   Phase-field simulation results of microstructure evolution of multi-grains UO2 at porosity fp=2% (The pores in the red elliptical areas hinder the movement of grain boundaries)


图12是不同气孔率下晶粒平均直径的变化规律。可以看出,相同演化时间下,晶粒的平均直径随气孔率的增大而下降,这表明气孔率的增加会减慢晶粒生长速率。这一结果与Kundin等[12]的模拟结果类似。

图12

图12   不同气孔率下的晶粒生长曲线

Fig.12   Grain growth curves at different fp


根据Rahaman[1]提出的晶粒生长理论,多晶体系晶粒生长满足幂函数的规律:

Dn(t)-D0n=kt

式中,D为晶粒平均直径;D0为初始晶粒平均直径;n为生长指数;k为比例系数。

表2是利用式(26)对图12中各曲线拟合得到的结果。可以看出,当气孔率由0增加到8%,n由2.05增加到4.19。Kundin等[12]研究表明,随着气孔率的增加,n将由2变为4。这与本工作的研究结果基本一致。

表2   不同气孔率下的晶粒生长指数

Table 2  Grain growth exponents at different fp

fpnR2
02.050.990
2%2.440.997
4%3.150.992
8%4.190.995

Note:n—grain growth exponent, R2correlation coefficient

新窗口打开| 下载CSV


4 结论

(1) 本工作建立的相场模型能够成功模拟气孔与晶界相互作用的过程。通过对模型的分析发现:相场自由能密度中取向场梯度项前的参数对晶界和相界的界面宽度的影响较大,而浓度场梯度项前的参数对其影响很小;晶粒取向场梯度项前的参数对晶界界面能的影响较大,而浓度场梯度项前的参数对相界界面能的影响较大。

(2) 气孔和晶界相互作用的相场模拟结果表明:晶界的曲率是晶界移动的动力,晶界移动速率与晶界的曲率成正比;气孔会对移动的晶界施加一定的阻力,当气孔施加的最大阻力大于等于晶界移动的动力时,气孔会随晶界一起运动;而当气孔施加的最大阻力小于晶界移动的动力时,气孔与晶界分离。若气孔与晶界未发生分离,体系的演化将由晶界主导转变为气孔主导,演化速率显著下降。

(3) 含气孔UO2多晶体系的晶粒生长的相场模拟结果表明:UO2平均晶粒直径与时间成幂函数关系,幂指数随气孔率的增大而增大。气孔率越大,晶粒生长速率越慢。

参考文献

Rahaman M N. Ceramic Processing and Sintering [M]. New York: Marcel Dekker, 1995: 540

[本文引用: 3]

Turnbull J A.

The effect of grain size on the swelling and gas release properties of UO2 during irradiation

[J]. J. Nucl. Mater., 1974, 50: 62

DOI      URL     [本文引用: 1]

Ahmed K, Tonks M, Zhang Y F, et al.

Particle-grain boundary interactions: A phase field study

[J]. Comput. Mater. Sci., 2017, 134: 25

DOI      URL     [本文引用: 6]

Zhao Y, Zhang H Y, Wei H, et al.

A phase field study for scaling rules of grain coarsening in polycrystalline system containing second-phase particles

[J]. Acta Metall. Sin., 2013, 49: 981

DOI      URL     [本文引用: 1]

Ra and the time t from the non-linear relationship t=ARam+B. The kinetic exponent m also increased with the increasing volume fraction of second-phase particles. No matter whether the second-phase particles existed or not in the system studied, the scaling rule had been satisfied at the late stage of grain coarsening. The increase in the volume fraction of the second-phase particles would cause the decrease in the peak value of structure factor profile. When the value of the wave vector k increased to a certain value, the structure factor curve of the studied system was essentially coincident. With the increase in the volume fraction of second-phase particles, The peak values of scaling function decreased and the peak width became wider. According to structure factor and scaling function, it was known that with the increase in the volume fraction of second-phase particles, the interaction among grains weakens and the grain size would become more uniform during the grain coarsening.]]>

(赵 彦, 张洪宇, 韦 华.

相场法研究含第二相颗粒多晶体系的晶粒粗化标度律

[J]. 金属学报, 2013, 49: 981)

DOI      URL     [本文引用: 1]

. 结果表明:随着第二相颗粒体积分数增加, 晶粒生长阻力增大,晶粒平均半径Ra随时间t的演化关系偏离t=ARam+B非线性关系,且动力学指数m随第二相颗粒体积分数增加而增大.在晶粒粗化阶段,无论第二相颗粒是否存在, 及第二相颗粒体积分数的大小, 系统均满足标度律.随着第二相颗粒体积分数增加, 系统结构因子曲线的峰值逐渐降低,且当波矢k值增大到某一值后, 系统结构因子曲线基本重合;随着第二相颗粒体积分数增加, 系统标度函数峰值降低, 峰宽变宽. 在较大的k值情况下,同一k值对应的标度函数值随第二相颗粒体积分数的增加而增大.由结构因子和标度函数可知, 第二相颗粒体积分数增加, 晶粒间的相互作用减弱,晶粒粗化过程中的尺寸均匀性将更好. ]]>

Zhou G Z, Wang Y X, Chen Z.

Phase-field method simulation of the effect of hard particles with different shapes on two-phase grain growth

[J]. Acta Metall. Sin., 2012, 48: 227

DOI      URL    

The effects of hard particles with different shapes, volume fractions and sizes on two-phase grain growth have been systematically investigated by phase-field method. The results showed that most of the spherical hard particles located at the intersection of tricrystal boundary, while flaky hard particles distributed along the grain boundary. Particles of different shapes have not obvious effect on the alpha phase grain growth, and the effect of hard particles with different shapes on the beta phase grain growth depends on the number of particles. The flaky particles have stronger pinning effect on the beta phase grain growth than the spherical particles when hard particles reach enough number. The pinning effect of the hard particles is enhanced when the volume fraction increased or the size of hard particles reduced. The greater the volume fraction or the smaller the size of hard particles is, the smaller the grains'size is.

(周广钊, 王永欣, 陈 铮.

相场法模拟不同形状的硬质颗粒对两相晶粒长大的影响

[J]. 金属学报, 2012, 48: 227)

DOI      URL    

采用相场方法研究了不同颗粒体积分数及尺寸条件下不同形状的硬质颗粒对两相系统晶粒长大的影响, 结果表明: 球形颗粒大多处于三角晶界处, 片状颗粒处于晶界处且沿晶界分布. 不同形状的硬质颗粒对体积占优的&alpha;相晶粒长大无明显影响, 对体积分数较小的&beta;相晶粒长大的影响主要取决于颗粒数目. 颗粒数目较少时, 不同形状的硬质颗粒对&beta;相晶粒长大无明显影响; 颗粒数目较多时, 片状颗粒比球形颗粒对&beta;相晶粒长大的阻碍作用强烈. 颗粒体积分数越大,颗粒对晶界的钉扎作用越强, 稳态时晶粒的半径越小; 颗粒尺寸越大,单个颗粒对晶界的钉扎作用越强, 但总的钉扎作用越弱, 稳态时晶粒的半径越大.

Gao Y J, Zhang H L, Jin X, et al.

Phase-field simulation of two-phase grain growth with hard particles

[J]. Acta Metall. Sin., 2009, 45: 1190

URL     [本文引用: 1]

Grain growth, due to its importance in controlling the physical properties of a wide variety of materials, has been extensively investigated. Second&ndash;phase particles have the capacity to &quot;pin&quot; grain boundaries and therefore affect the grain growth behavior of polycrystalline materials profoundly. They reduce the mobility of grain boundaries and eventually, when a critical grain size is reached, arrest grain growth. Based on a diffuse&ndash;interface description, a computer simulation model for studying the microstructural evolution in two&ndash;phase solid has been developed. For a grain system with hard particles, the kinetics of two&ndash;phase grain growth with the third hard particles was investigated by phase field model with a continuum diffuse&ndash;interface field. A polycrystalline microstructure of temporal and spatial evolution of the three&ndash;phase&ndash;solid system was obtained by solving three kinetics equations. It is found that the pinning effect is enhanced with the increase of the size and the volume fraction of third&ndash;phase particles. The greater the volume fraction and size of third&ndash;phase particles are, the smaller the limited sizes of grain growth are. If the volume fraction of third&ndash;phase particle maintains a constant and the size of third&ndash;phase particles is smaller, then the pinning effect of third&ndash;phase particles is stronger. When third particles with two different sizes under the same volume fraction are introduced in the system of grain growth, the pinning effect of the particles is the best. The power growth law, grain morphology, critical grain size, grain growth dynamics and topology structure of two&ndash;phase polycrystalline materials simuated by phase&ndash;fielmodel are in well accordnce with the experimental results and theoretical results of other simulations.

(高英俊, 张海林, 金 星.

相场方法研究硬质颗粒钉扎的两相晶粒长大过程

[J]. 金属学报, 2009, 45: 1190)

URL     [本文引用: 1]

采用相场方法模拟第三相颗粒钉扎的两相耦合的晶粒长大过程, 系统地研究了第三相颗粒体积分数和尺寸大小对两相晶粒长大 过程的影响. 模拟结果表明, 第三相颗粒体积分数越大, 对晶界的钉扎作用越强, 且极限晶粒尺寸越小. 单个第三相颗粒尺寸越大, 对晶界钉扎作用越强. 但当体积分数一定时第三相颗粒尺寸越小时, 颗粒数目会越多, 此时总的钉扎效果会越好, 晶粒极限尺寸也越小. 若晶粒长大系统同时引入两种不同大小的第三相钉扎颗粒, 且两种颗粒所占比例相同时, 钉扎效果最好. 相场方法模拟所得到的二相多晶材料晶粒组织演化规律和晶粒生长指数、晶粒形态、生长动力学和拓扑结构特征与已有实验和理论结果相符合

Ahmed K, Yablinsky C A, Schulte A, et al.

Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics

[J]. Model. Simul. Mater. Sci. Eng., 2013, 21: 065005

DOI      URL    

Moelans N, Blanpain B, Wollants P.

Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase field simulations

[J]. Acta Mater., 2007, 55: 2173

DOI      URL     [本文引用: 2]

AbstractThree-dimensional simulations of grain growth in thin films containing finely dispersed second-phase particles were performed using a phase field model. The simulations show that although the growth behavior of the columnar grain structures in thin films is essentially two-dimensional, the interaction between the particles and the grain boundaries is three-dimensional. Grain boundaries can therefore more easily break free from the particles than in purely two-dimensional systems, resulting in fewer grain boundary–particle intersections and a larger final grain size. For a given volume fraction fV and size of the particles r, the final grain size increases with film thickness. Moreover, it was found that particles located in the middle of the film are most efficient in pinning grain boundaries. A classical Zener type relation cannot describe these effects.]]>

Moelans N, Blanpain B, Wollants P.

A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles

[J]. Acta Mater., 2005, 53: 1771

DOI      URL     [本文引用: 2]

AbstractA phase field model is presented for simulating grain growth in materials containing small incoherent second-phase particles that are constant in time. The model of [L.-Q. Chen, W. Yang, Phys. Rev. B 50 (1994) 15752] for grain growth in single phase materials, that represents a polycrystalline microstructure with a set of phase field variables ηi(r,t), has been modified to incorporate the presence of second-phase particles by adding an extra term to the free energy expression, with Φ a spatially dependent parameter that equals one inside the particles, and zero elsewhere and ? a positive constant. The interaction between a particle and a diffuse interphase is analyzed from an energetic point of view and the effect of pinning particles on the shape and the evolution of an initially spherical grain is studied for two-dimensional and three-dimensional systems.]]>

Chang K, Feng W M, Chen L Q.

Effect of second-phase particle morphology on grain growth kinetics

[J]. Acta Mater., 2009, 57: 5229

DOI      URL     [本文引用: 1]

AbstractSecond-phase particles are often employed to inhibit grain growth in polycrystalline metals and ceramics. In this work, we studied the effect of second-phase particle morphology on the effectiveness of inhibiting grain boundary migration using the phase-field method. We employed a multi-order parameter phase-field model in combination with an efficient memory allocation strategy which allows large-scale and coalescence-free grain growth simulations. We analyzed the dependence of pinning forces on the particle size and shape, and performed computer simulations of grain growth in the presence of second-phase particles with different sizes and varying aspect ratios. We also discuss the relationship between the pinned grain size and size distributions.]]>

Hötzer J, Rehn V, Rheinheimer W, et al.

Phase-field study of pore-grain boundary interaction

[J]. J. Ceram. Soc. Jpn., 2016, 124: 329

DOI      URL     [本文引用: 1]

Kundin J, Sohaib H, Schiedung R, et al.

Phase-field modelling of pores and precipitates in polycrystalline systems

[J]. Model. Simul. Mater. Sci. Eng., 2018, 26: 065003

DOI      URL     [本文引用: 4]

Nichols F A.

Theory of grain growth in porous compacts

[J]. J. Appl. Phys., 1966, 37: 4599

DOI      URL     [本文引用: 1]

Brook R J.

Pore-grain boundary interactions and grain growth

[J]. J. Am. Ceram. Soc., 1969, 52: 56

DOI      URL     [本文引用: 1]

Riedel H, Svoboda J.

A theoretical study of grain growth in porous solids during sintering

[J]. Acta Metall. Mater., 1993, 41: 1929

DOI      URL     [本文引用: 1]

Petrishcheva E, Renner J.

Two-dimensional analysis of pore drag and drop

[J]. Acta Mater., 2005, 53: 2793

DOI      URL    

AbstractWe consider stationary coupled migration (drag) and conditions for separation (drop) of pores situated on grain boundaries or triple junctions in two-dimensional (2D) geometry. Pore mobility is realized by surface diffusion and boundaries migrate owing to surface tension. A small velocity approximation yields pore mobility and estimates for the velocity at which separation occurs. The estimate is refined by numerical solution. In contrast to previous expectations, separation occurs in 2D and the critical velocity for pores with circular cross section is non-zero. Our numerics are further confirmed by bifurcation analysis. The critical velocities for 2D pores at triple junctions are considerably smaller than for 2D pores on grain boundaries, which in turn are smaller by a factor of two to three compared to critical velocities of three-dimensional lenticular pores on grain boundaries. We also determine the coupled pore-boundary mobility and demonstrate that the boundary mobility is practically always reduced by pores.]]>

Klinger L, Rabkin E, Shvindlerman L S, et al.

Grain growth in porous two-dimensional nanocrystalline materials

[J]. J. Mater. Sci., 2008, 43: 5068

DOI      URL     [本文引用: 1]

Fan D, Chen L Q.

Computer simulation of grain growth using a continuum field model

[J]. Acta Mater., 1997, 45: 611

DOI      URL     [本文引用: 3]

Moelans N, Blanpain B, Wollants P.

An introduction to phase-field modeling of microstructure evolution

[J]. Calphad, 2008, 32: 268

DOI      URL     [本文引用: 1]

AbstractThe phase-field method has become an important and extremely versatile technique for simulating microstructure evolution at the mesoscale. Thanks to the diffuse-interface approach, it allows us to study the evolution of arbitrary complex grain morphologies without any presumption on their shape or mutual distribution. It is also straightforward to account for different thermodynamic driving forces for microstructure evolution, such as bulk and interfacial energy, elastic energy and electric or magnetic energy, and the effect of different transport processes, such as mass diffusion, heat conduction and convection. The purpose of the paper is to give an introduction to the phase-field modeling technique. The concept of diffuse interfaces, the phase-field variables, the thermodynamic driving force for microstructure evolution and the kinetic phase-field equations are introduced. Furthermore, common techniques for parameter determination and numerical solution of the equations are discussed. To show the variety in phase-field models, different model formulations are exploited, depending on which is most common or most illustrative.]]>

Krivilyov M D, Mesarovic S D, Sekulic D P.

Phase-field model of interface migration and powder consolidation in additive manufacturing of metals

[J]. J. Mater. Sci., 2017, 52: 4155

DOI      URL    

Lin M Z, Zhang R J, Fang W, et al.

Phase field simulation of sintering process in biphasic porous material

[J]. Acta Metall. Sin., 2012, 48: 1207

DOI      URL    

Sintering is a process of bonding between solid particles which typically occurs under high temperature. Currently, simulation of sintering process is mainly concentrated on the single-phase polycrystalline materials. As there are a lot of materials which are biphasic porous system, it is of practical significance to simulate the microstructural evolution of biphasic porous system during sintering process. In this work, a new phase field model is established to simulate sintering process in biphasic porous system. The evolution of the component is governed by Cahn-Hilliard equation, while the orientation field by the time-dependent Allen-Calm equation. A. function is established to describe the relationship between atomic diffusion coefficient and grain boundary diffusion, surface diffusion and volume diffusion. A group of phenomenological coefficients are obtained by analyzing the characteristic of the phase-field model. The simulation results show that the new phase-field model can effectively simulate the sintering process in biphasic porous system. The formation and growth of sintering neck, the seal spheroidization and disappearance of pores as well as the mergence and growth of grains are observed during simulation. The sintering necks between the parent phase and the second phase grow very fast at the early stage of simulation, while at the late stage, because of the pinning effect, the growth rate of the sintering neck slows down obviously, pores become isolated by the grains, and its shape change from concave to convex, the relative small pores are eliminated, which leads to densification. As the sintering proceeds, the grain size of the second phase gradually decreases and the parent-phase grains are wrapped by the second-phase grains Because of the pinning effect of the second phase, the migration rate of the grain boundary of the parent phase is restrained. The evolution course of pores depends largely on the interaction between the second phase and the pores. The evolution rate of pores is quantitatively compared between the biphasic porous system and the single-phase system. In the case of biphasic porous system, the evolution rate of pores is slower than that in single-phase system. The simulating growth exponents of the parent phase are calculated with different volume fractions of the second phase. As the volume fractions of the second phase increase from 15% to 25%, the grain growth exponent changes from 2.9 to 3.4.

(刘明治, 张瑞杰, 方 伟.

相场法模拟两相多孔组织烧结

[J]. 金属学报, 2012, 48: 1207)

DOI      URL    

建立了新的模拟两相多孔材料烧结过程的相场模型, 采用Cahn-Hillard方程和Allen-Cahn方程来控制相对密度场和长程取向场的变化, 通过分析相场方程的特点, 对模型进行数学处理得到一组相场模型的唯象系数, 建立了原子扩散系数与晶界扩散、表面扩散和体积扩散的函数关系式. 模拟结果表明: 该模型能够有效地模拟两相多孔材料的烧结过程, 通过分析模拟图像可以很好地观察到两相多孔材料的微观组织演化过程.

Chen Y, Kang X H, Xiao N M, et al.

Phase field modelling of grain growth in polycrystalline material

[J]. Acta Phys. Sin., 2009, 58: 124

(陈 云, 康秀红, 肖纳敏.

多晶材料晶粒生长粗化过程的相场方法模拟

[J]. 物理学报, 2009, 58: 124)

DOI      URL    

ψ和晶体学取向θ来表示多晶粒结构的相场模型,利用自适应有限元方法模拟了多晶材料等温过程中的晶粒粗化现象.模拟结果显示,在曲率作用下,通过晶界迁移弯曲晶界逐渐平直化,小晶粒逐渐被大晶粒吞并,当晶界之间的取向差较小时,满足一定能量和几何条件的两晶粒在界面能作用下会发生转动,合并为单个晶粒.模拟结果与实验结果符合较好.因此,该相场模型可以很好地用来模拟固态相变中多晶材料的生长粗化等现象.]]>

Jing X N, Ni Y, He L H, et al.

2-D phase-field simulation of pore evolution in sintering ceramics

[J]. J. Inorg. Mater., 2002, 17: 1078

[本文引用: 1]

(景晓宁, 倪 勇, 何陵辉.

陶瓷烧结过程孔隙演化的二维相场模拟

[J]. 无机材料学报, 2002, 17: 1078)

URL     [本文引用: 1]

采用二维相场模型模拟陶瓷烧结过程中颗粒间孔隙的演化过程.选取四方堆积颗粒间气孔作为对象.通过连续的密度场和长程取向场(LRO)描述烧结体的微结构,密度场的演化由Cahn-Hillard(CH)方程控制,而颗粒的取向场演化由时间相关的Ginzburg-Laudau(TDGL)方程控制.上述非线性演化方程利用半隐傅立叶频域法求解.模拟结果反映了颗粒间接触,烧结颈生长和气孔球化的微观过程.量化计算烧结颈生长率以及在不同晶界和表面迁移率比值时的烧结率,较好地符合理论分析的趋势.

Deng J.

A phase field model of sintering with direction-dependent diffusion

[J]. Mater. Trans., 2012, 53: 385

DOI      URL     [本文引用: 1]

Sun Z Y, Yang C, Liu W B.

Phase-field simulations of the sintering process of uranium dioxide

[J]. Acta Metall. Sin., 2020, 56: 1295

[本文引用: 1]

(孙正阳, 杨 超, 柳文波.

UO2烧结过程的相场模拟

[J]. 金属学报, 2020, 56: 1295)

[本文引用: 1]

Lu D, Jiang P, Xu Z Z. Solid State Physics [M]. 2nd Ed., Shanghai: Shanghai Scientific and Technical Publishers, 2010: 364

[本文引用: 2]

(陆 栋, 蒋 平, 徐至中. 固体物理学 [M]. 第2版. 上海: 上海科学技术出版社, 2010: 364)

[本文引用: 2]

Chen L Q, Fan D N.

Computer simulation model for coupled grain growth and Ostwald ripening—Application to Al2O3-ZrO2 two-phase systems

[J]. J. Am. Ceram. Soc., 1996, 79: 1163

DOI      URL     [本文引用: 3]

Cahn J W.

On spinodal decomposition

[J]. Acta Metall., 1961, 9: 795

DOI      URL     [本文引用: 1]

Moelans N, Blanpain B, Wollants P.

Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems

[J]. Phys. Rev., 2008, 78B: 024113

[本文引用: 1]

Hsueh C H, Evans A G, Coble R L.

Microstructure development during final/intermediate stage sintering—I. Pore/grain boundary separation

[J]. Acta Metall., 1982, 30: 1269

DOI      URL     [本文引用: 1]

Ahmed K, Allen T, El-Azab A.

Phase field modeling for grain growth in porous solids

[J]. J. Mater. Sci., 2016, 51: 1261

DOI      URL     [本文引用: 1]

Ahmed K, Pakarinen J, Allen T, et al.

Phase field simulation of grain growth in porous uranium dioxide

[J]. J. Nucl. Mater., 2014, 446: 90

DOI      URL     [本文引用: 1]

/