Please wait a minute...
金属学报  2023, Vol. 59 Issue (11): 1513-1522    DOI: 10.11900/0412.1961.2022.00182
  本期目录 | 过刊浏览 |
UN核燃料烧结致密化过程的相场模拟
戚晓勇1,2, 柳文波1,2(), 何宗倍3, 王一帆3, 恽迪1,2
1.西安交通大学 核科学与技术学院 西安 710049
2.西安交通大学 陕西省先进核能技术重点实验室 西安 710049
3.中国核动力研究设计院 反应堆燃料与材料重点实验室 成都 610213
Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel
QI Xiaoyong1,2, LIU Wenbo1,2(), HE Zongbei3, WANG Yifan3, YUN Di1,2
1.School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
2.Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University, Xi'an 710049, China
3.State Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610213, China
引用本文:

戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
Xiaoyong QI, Wenbo LIU, Zongbei HE, Yifan WANG, Di YUN. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. Acta Metall Sin, 2023, 59(11): 1513-1522.

全文: PDF(1469 KB)   HTML
摘要: 

引入了平移和旋转等作用过程,建立了烧结致密化过程的相场模型,分析了平流通量刚体运动对烧结颈的形成、平衡二面角和烧结致密化过程的影响。模拟结果表明,引入平流通量刚体运动在烧结初期加快了烧结颈的形成,而在烧结后期作用不明显;烧结相场模型中是否引入平流通量不影响晶界平衡二面角的取值;致密化过程的气孔收缩分为3个阶段,分别是烧结初期的表面扩散主导阶段、平流通量取代表面扩散的阶段和致密化完成阶段;增大平移迁移率能加快致密化过程、增加致密化程度,但超过一定阈值后其作用达到饱和;颗粒完成致密化收缩后会形成稳定的三叉晶界(夹角120°),多晶UN烧结模拟形貌演化中三叉晶界的形成和气孔收缩致密化的行为与实验结果一致。

关键词 相场模拟UN烧结致密化平流通量    
Abstract

UN is a candidate fuel for light water reactors and fast reactors due to its high density, high thermal conductivity, and high melting point. The highly densified UN particles are desirable to strengthen the fuel structure and delay the release of fission gas. However, the mechanism of densification during sintering is still unclear from the view point of existing experimental results. Therefore, it is essential to simulate the densification process during sintering using the phase-field (PF) method. In the present work, the rigid body action of translation and rotation was introduced in the PF model. This work analyzed the effects of the advection flux of rigid body motion on the formation of the sintered neck, the equilibrium dihedral angle, and the densification during sintering. The simulation results showed that the introduction of advection flux of rigid body motion accelerated the formation of the sintering neck in the early stage of sintering, while such an effect was not obvious in the later stage. The equilibrium dihedral angle of the model with advection flux was consistent with that of the model, which only contained surface diffusion. The densification stomatal shrinkage was divided into three stages: surface diffusion dominated stage, advection flux dominated stage, and final densification progress. The increase in translational mobility accelerated the densification speed and increased the final density after densification, although this effect reached saturation after a certain threshold. Stable trigeminal grain boundaries (GBs) with 120° were formed when densification was completed. The characteristics of the sintered morphology of polycrystalline UN, such as trigeminal GBs, pore shrinkage, and densification, were consistent with the experimental results.

Key wordsphase-field simulation    UN    sintering    densification    advection flux
收稿日期: 2022-04-18     
ZTFLH:  TG148  
基金资助:国家自然科学基金委员会与中国工程物理研究院联合基金(NSAF联合基金)项目(U2130105);中国博士后科学基金项目(2019M663738);清华大学新型陶瓷与精细工艺国家重点实验室项目(KF201713);中国核工业集团有限公司领创科研项目
通讯作者: 柳文波,liuwenbo@xjtu.edu.cn,主要从事核燃料和核材料的多尺度模拟研究
Corresponding author: LIU Wenbo, associate professor, Tel: (029)82668948, E-mail: liuwenbo@xjtu.edu.cn
作者简介: 戚晓勇,男,1997年生,硕士生
图1  烧结模拟中空位扩散示意图
ParameterValueUnitRef.
Ds7.5 × 10-12m2·s-1[26]
Dgb0.01Dsm2·s-1
γs1.6J·m-2[27]
γgb0.8J·m-2[27]
δ6nm[27]
表1  UN的物理参数[26,27]
ParameterValueParameterValue
A˜17m˜t30-100
B˜1m˜r1
κ˜η6.75L˜1
κ˜ρ20.25Δx = Δy1
M˜6750Δt2 × 10-5
表2  模拟中的无量纲参数
图2  平流通量对2个晶粒烧结形貌演化的影响
图3  平流通量对2个颗粒烧结颈增长曲线的影响
图4  平流通量对平衡二面角的影响
图5  平流通量对2个颗粒烧结过程中晶界气孔演化的影响
图6  平流通量作用下2个颗粒烧结过程中晶界的气孔收缩率
图7  引入平流通量后3个颗粒烧结时的形貌演化过程
图8  3个颗粒烧结时形貌演化过程所对应的平流通量
图9  平流通量作用下3个颗粒烧结时晶界上封闭气孔的收缩率
图10  不同平移迁移率下的气孔收缩率
图11  引入平流通量后4个颗粒烧结时的形貌演化过程
图12  多晶烧结形貌演化的相场模拟
1 Uno M, Nishi T, Takano M. Thermodynamic and thermophysical properties of the actinide nitrides [J]. Compr. Nucl. Mater., 2012, 2: 61
2 Szpunar B, Szpunar J A. Thermal conductivity of uranium nitride and carbide [J]. Int. J. Nucl. Energy, 2014, 2014: 178360
3 Yang K, Kardoulaki E, Zhao D, et al. Uranium nitride (UN) pellets with controllable microstructure and phase-fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties [J]. J. Nucl. Mater., 2021, 557: 153272
doi: 10.1016/j.jnucmat.2021.153272
4 Yin B Y, Qu Z H. Property of uranium nitride ceramic pellet by hot press sintering [J]. Atom. Energy Sci. Technol., 2014, 48: 1850
4 尹邦跃, 屈哲昊. 热压烧结UN陶瓷芯块的性能 [J]. 原子能科学技术, 2014, 48: 1850
doi: 10.7538/yzk.2014.48.10.1850
5 Mclaren J R, Atkinson P W M. The sintering of uranium mononitride [J]. J. Nucl. Mater., 1965, 17: 142
doi: 10.1016/0022-3115(65)90031-0
6 Muta H, Kurosaki K, Uno M, et al. Thermal and mechanical properties of uranium nitride prepared by SPS technique [J]. J. Mater. Sci., 2008, 43: 6429
doi: 10.1007/s10853-008-2731-x
7 Malkki P, Jolkkonen M, Hollmer T, et al. Manufacture of fully dense uranium nitride pellets using hydride derived powders with spark plasma sintering [J]. J. Nucl. Mater., 2014, 452: 548
doi: 10.1016/j.jnucmat.2014.06.012
8 Johnson K D, Wallenius J, Jolkkonen M, et al. Spark plasma sintering and porosity studies of uranium nitride [J]. J. Nucl. Mater., 2016, 473: 13
doi: 10.1016/j.jnucmat.2016.01.037
9 Johnson K D, Lopes D A. Grain growth in uranium nitride prepared by spark plasma sintering [J]. J. Nucl. Mater., 2018, 503: 75
doi: 10.1016/j.jnucmat.2018.02.041
10 Mullins W W. Two‐dimensional motion of idealized grain boundaries [J]. J. Appl. Phys., 1956, 27: 900
doi: 10.1063/1.1722511
11 Rahaman M N. Ceramic Processing and Sintering [M]. New York: Marcel Dekker, 1995: 446
12 German R M. Sintering Theory and Practice [M]. New York: Wiley-Interscience, 1996: 130
13 Kazaryan A, Wang Y, Patton B R. Generalized phase field approach for computer simulation of sintering: Incorporation of rigid-body motion [J]. Scr. Mater., 1999, 41: 487
doi: 10.1016/S1359-6462(99)00179-7
14 Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method [J]. Prog. Mater. Sci., 2022, 124: 100868
doi: 10.1016/j.pmatsci.2021.100868
15 Ishii A, Yamanaka A, Miyoshi E, et al. Efficient estimation of material parameters using DMC-BO: Application to phase-field simulation of solid-state sintering [J]. Mater. Today Commun., 2022, 30: 103089
16 Ahmed K, Pakarinen J, Allen T, et al. Phase field simulation of grain growth in porous uranium dioxide [J]. J. Nucl. Mater., 2014, 446: 90
doi: 10.1016/j.jnucmat.2013.11.036
17 Kundin J, Sohaib H, Schiedung R, et al. Phase-field modeling of pores and precipitates in polycrystalline systems [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 065003
18 Hötzer J, Seiz M, Kellner M, et al. Phase-field simulation of solid state sintering [J]. Acta Mater., 2019, 164: 184
doi: 10.1016/j.actamat.2018.10.021
19 German R M. Coarsening in sintering: grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems [J]. Crit. Rev. Solid State Mater. Sci., 2010, 35: 263
doi: 10.1080/10408436.2010.525197
20 Fan D, Chen L Q. Computer simulation of grain growth using a continuum field model [J]. Acta Mater., 1997, 45: 611
doi: 10.1016/S1359-6454(96)00200-5
21 Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
doi: 10.1016/0001-6160(61)90182-1
22 Wang Y U. Computer modeling and simulation of solid-state sintering: A phase field approach [J]. Acta Mater., 2006, 54: 953
doi: 10.1016/j.actamat.2005.10.032
23 Ahmed K, Yablinsky C A, Schulte A, et al. Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics [J]. Modell. Simul. Mater. Sci. Eng., 2013, 21: 065005
24 Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
doi: 10.1016/0001-6160(79)90196-2
25 Biner S B. Programming Phase-Field Modeling [M]. Switzerland: Springer International Publishing, 2017: 18
26 Holt J B, Almassy M Y. Nitrogen diffusion in uranium nitride as measured by alpha particle activation of 15N [J]. J. Am. Ceram. Soc., 1969, 52: 631
doi: 10.1111/jace.1969.52.issue-12
27 Bocharov D, Gryaznov D, Zhukovskii Y F, et al. Ab initio simulations of oxygen interaction with surfaces and interfaces in uranium mononitride [J]. J. Nucl. Mater., 2013, 435: 102
doi: 10.1016/j.jnucmat.2012.12.031
28 Riedel H, Svoboda J. A theoretical study of grain growth in porous solids during sintering [J]. Acta Metall. Mater., 1993, 41: 1929
doi: 10.1016/0956-7151(93)90212-B
29 Sun Z Y, Yang C, Liu W B. Phase field simulations of the sintering process of UO2 [J]. Acta Metall. Sin., 2020, 56: 1295
29 孙正阳, 杨 超, 柳文波. UO2烧结过程的相场模拟 [J]. 金属学报, 2020, 56: 1295
doi: 10.11900/0412.1961.2019.00440
30 Shi R P, Wood M, Heo T W, et al. Towards understanding particle rigid-body motion during solid-state sintering [J]. J. Eur. Ceram. Soc., 2021, 41: 211
doi: 10.1016/j.jeurceramsoc.2021.09.039
31 Sun Z Y, Wang Y T, Liu W B. Phase-field simulation of the interaction between pore and grain boundary [J]. Acta Metall. Sin., 2020, 56: 1643
doi: 10.11900/0412.1961.2020.00120
31 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟 [J]. 金属学报, 2020, 56: 1643
doi: 10.11900/0412.1961.2020.00120
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[3] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[4] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[6] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[7] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.
[8] 皮慧龙, 石小磊, 徐兴祥. SiZr液相烧结法制备SiC-ZrC涂层对C/SiC复合材料抗氧化性能的影响[J]. 金属学报, 2021, 57(6): 791-796.
[9] 刘泽, 宁汉维, 林彰乾, 王东君. SPS烧结参数对NiAl-28Cr-5.5Mo-0.5Zr合金微观组织及室温力学性能的影响[J]. 金属学报, 2021, 57(12): 1579-1587.
[10] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[11] 孙正阳, 杨超, 柳文波. UO2烧结过程的相场模拟[J]. 金属学报, 2020, 56(9): 1295-1303.
[12] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.
[13] 潘宇, 路新, 刘程程, 孙健卓, 佟健博, 徐伟, 曲选辉. Sn对TiAl基合金烧结致密化与力学性能的影响[J]. 金属学报, 2018, 54(1): 93-99.
[14] 康利梅,杨超,李元元. 半固态烧结法制备高强韧新型双尺度结构钛合金[J]. 金属学报, 2017, 53(4): 440-446.
[15] 李安华, 张月明, 冯海波, 邹宁, 吕忠山, 邹旭杰, 李卫. 烧结Ce-Fe-B磁体的力学性能[J]. 金属学报, 2017, 53(11): 1478-1486.