Please wait a minute...
金属学报  2020, Vol. 56 Issue (12): 1569-1580    DOI: 10.11900/0412.1961.2020.00154
  本期目录 | 过刊浏览 |
形变及退火工艺对Fe47Mn30Co10Cr10B3双相高熵合金组织演变的影响
刘怡1, 涂坚1,2(), 杨威华1, 尹瑞森3, 谭力1, 黄灿1, 周志明1,2
1 重庆理工大学材料科学与工程学院 重庆 400054
2 重庆理工大学重庆市模具技术重点实验室 重庆 400054
3 重庆大学航天航空学院 重庆 400044
Effect of Deformation and Annealing Treatment on Microstructure Evolution of Fe47Mn30Co10Cr10B3 Dual-Phase High-Entropy Alloy
LIU Yi1, TU Jian1,2(), YANG Weihua1, YIN Ruisen3, TAN Li1, HUANG Can1, ZHOU Zhiming1,2
1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2 Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054, China
3 College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
引用本文:

刘怡, 涂坚, 杨威华, 尹瑞森, 谭力, 黄灿, 周志明. 形变及退火工艺对Fe47Mn30Co10Cr10B3双相高熵合金组织演变的影响[J]. 金属学报, 2020, 56(12): 1569-1580.
Yi LIU, Jian TU, Weihua YANG, Ruisen YIN, Li TAN, Can HUANG, Zhiming ZHOU. Effect of Deformation and Annealing Treatment on Microstructure Evolution of Fe47Mn30Co10Cr10B3 Dual-Phase High-Entropy Alloy[J]. Acta Metall Sin, 2020, 56(12): 1569-1580.

全文: PDF(5664 KB)   HTML
摘要: 

利用电子通道衬度显像(ECCI)和EBSD等表征设备研究形变及退火工艺对Fe47Mn30Co10Cr10B3双相高熵合金组织演变的影响。结果表明,随形变量的增加,形变机制分为3个阶段:fcc相内位错滑移主导,相变诱导塑性和位错滑移共同主导,hcp相内位错滑移主导。随退火时间的增加,组织发生部分再结晶到完全再结晶的转变。在晶界处的第二相可有效抑制再结晶晶粒长大,从而获得混晶组织。退火孪晶变体受fcc晶粒取向的影响:<101>取向的晶粒内易形成多孪晶变体,<111>和<100>取向的晶粒内易形成单孪晶变体。退火孪晶变体数量影响单变体hcp相的形态特征:无孪晶变体时有利于块状hcp相形成,单个孪晶变体时有利于条状hcp相形成。fcc晶粒尺寸影响hcp变体数量:大尺寸晶粒有利于多个hcp变体形成,而小尺寸晶粒有利于单个hcp变体形成。

关键词 高熵合金微观组织相变诱导塑性变体    
Abstract

In recent years, non-equiatomic high-entropy alloy (HEA) has been proposed to explore the flexibility of its design rule, avoiding the strength-ductility tradeoff. For further progress, non-equiatomic HEAs doped with interstitial atoms are developed. Boron, an effective dopant in metallurgy, has been used due to the beneficial compositional effects on the interfaces of metallic materials. In this work, the effects of deformation and annealing treatments on the microstructural evolution of Fe47Mn30Co10Cr10B3 dual-phase HEAs were investigated via electron channeling contrast imaging (ECCI) and EBSD. The results show that there are three stages in the deformation mechanism with an increase in the deformation degree, which include the dominant dislocation slip in the fcc phase, joint deformation of the transformation-induced plasticity and dislocation slip, and activation of dislocation slip in the hcp phase. With an increase in the annealing holding time, the partial recrystallization transformed to complete recrystallization. Further, particles located in the grain boundary can effectively restrain grain growth, and in turn, exhibit the bimodal grain size. The amount of annealing twinning variants is influenced by the fcc grain orientation: grains with <101> orientation are prone to forming multiple twinning variants, whereas, grains with <111> and <100> orientations are prone to forming a single twinning variant. The amount of annealing twinning variants also affected the morphological characteristics of the single hcp variant; the absence of annealing twinning variant is ascribed to the formation of blocky hcp phases and the single annealing twinning variant is attributed to the formation of laminate hcp phase. Moreover, the number of hcp variants was affected by the fcc grain sizes; large-sized grains facilitated the formation of multiple hcp variants, whereas, small-sized grains facilitated the formation of the single hcp variant.

Key wordshigh entropy alloy    microstructure    transformation-induced plasticity    variant
收稿日期: 2020-05-11     
ZTFLH:  TG113.1  
基金资助:重庆市教委科技研究项目(KJQN201801139);国家博士后科学基金项目(2018M632250);重庆理工大学研究生创新项目(ycx20192040)
作者简介: 刘 怡,女,1996年生,硕士生
图1  Fe50-xMn30Co10Cr10Bx (x=0~5)高熵合金(HEA)的伪二元相图,及x=0和3时高熵合金的相组成随温度的变化图Color online
图2  铸态Fe47Mn30Co10Cr10B3 HEA微观组织的SEM像及EDS元素面扫描图Color online
LocationFeMnCoCrB
117.4424.461.3447.918.85
247.0627.349.8010.625.18
表1  图2c中第二相颗粒及基体的EDS分析结果 (atomic fraction / %)
图3  铸态Fe47Mn30Co10Cr10B3 HEA的XRD谱
图4  不同形变量下Fe47Mn30Co10Cr10B3 HEA的微观组织演变图
图5  不同形变量下Fe47Mn30Co10Cr10B3 HEA的EBSD图Color online(a1~c1) inverse pole figure (IPF) maps (Black lines represent high angle boundaries, gray lines represent low angle boundaries) (a2~c2) phase maps (a3~c3) Kernel average misorientation (KAM) maps
图6  形变态Fe47Mn30Co10Cr10B3 HEA经不同退火处理后的微观组织(a1~a3) deformed 10% sample followed by annealing at 1000 ℃ for 5 min(b1~d3) deformed 50% sample followed by annealing at 1000 ℃ for 1 min (b1~b3), 5 min (c1~c3) and 30 min (d1~d3)
图7  形变态Fe47Mn30Co10Cr10B3和Fe50Mn30Co10Cr10 HEA样品经不同退火处理后的EBSD图Color online(a1~a3) deformed 10% Fe47Mn30Co10Cr10B3 HEA samples followed by annealing at 1000 ℃ for 5 min(b1~d3) deformed 50% Fe47Mn30Co10Cr10B3 HEA samples followed by annealing at 1000 ℃ for 1 min (b1~b3), 5 min(c1~c3) and 30 min (d1~d3) (e1~e3) deformed 50% Fe50Mn30Co10Cr10 HEA samples followed by annealing at 1000 ℃ for 5 min
图8  变形50%的Fe47Mn30Co10Cr10B3 HEA在不同退火条件下的孪晶变体情况Color online(a1~c1) single fcc grain with multiple twinning variants (a2~c2) single fcc grain with single twinning variant (a3~c3) multiple twinning variants in whole fcc grains (a4~c4) single twinning variant in whole fcc grains
图9  变形50%的Fe47Mn30Co10Cr10B3 HEA退火样品中热诱导hcp相变体分析Color online(a1, b1) IPF maps (a2, b2) phase maps (a3, b3) grains with multiple hcp variants (a4, a5, b4, b5) grains with single hcp variant (a6, b6) grains without hcp variants
图10  Fe47Mn30Co10Cr10B3 HEA形变和退火过程的微观组织演变示意图Color online
[1] Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
[2] Tsai M H, Yeh J W. High-entropy alloys: A critical review [J]. Mater. Res. Lett., 2014, 2: 107
doi: 10.1080/21663831.2014.912690
[3] Sharma A S, Yadav S, Biswas K, et al. High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement [J]. Mater. Sci. Eng., 2018, R131: 1
[4] Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
doi: 10.1007/s40843-017-9195-8
[5] Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Mater., 2013, 61: 2628
doi: 10.1016/j.actamat.2013.01.042
[6] Li Z M, Raabe D. Strong and ductile non-equiatomic high-entroy alloys: Design, processing, microstructure, and mechanical properties [J]. JOM, 2017, 69: 2099
doi: 10.1007/s11837-017-2540-2 pmid: 31983864
[7] Pradeep K G, Tasan C C, Yao M J, et al. Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design [J]. Mater. Sci. Eng., 2015, A648: 183
[8] Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981 pmid: 27279217
[9] Chang X J, Zeng M Q, Liu K L, et al. Phase engineering of high-entropy alloys [J]. Adv. Mater., 2020, 32: 1907226
doi: 10.1002/adma.v32.14
[10] Sathiyamoorthi P, Kim H S. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties [J]. Prog. Mater. Sci., 2020: 100709
[11] Guo W Q, Su J, Lu W J, et al. Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy [J]. Acta Mater., 2020, 185: 45
doi: 10.1016/j.actamat.2019.11.055
[12] Jo Y H, Jung S, Choi W M, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2017, 8: 15719
pmid: 28604656
[13] He Z F, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2019, A759: 437
[14] Wei D X, Li X Q, Jiang J, et al. Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys [J]. Scr. Mater., 2019, 165: 39
doi: 10.1016/j.scriptamat.2019.02.018
[15] Lv Z P, Jiang S H, He J Y, et al. Second phase strengthening in advanced metal materials [J]. Acta Metall. Sin., 2016, 52: 1183
doi: 10.11900/0412.1961.2016.00383
[15] (吕昭平, 蒋虽合, 何骏阳等. 先进金属材料的第二相强化 [J]. 金属学报, 2016, 52: 1183)
doi: 10.11900/0412.1961.2016.00383
[16] Lv Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-rntropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
doi: 10.11900/0412.1961.2018.00372
[16] (吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553)
doi: 10.11900/0412.1961.2018.00372
[17] Wang Z W, Baker I, Cai Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
doi: 10.1016/j.actamat.2016.08.072
[18] Lei Z F, Wu Y, He J Y, et al. Snoek-type damping performance in strong and ductile high-entropy alloys [J]. Sci. Adv., 2020, 6: eaba7802
doi: 10.1126/sciadv.aba7802 pmid: 32596465
[19] Liu C T, White C L, Horton J A. Effect of boron on grain-boundaries in Ni3Al [J]. Acta Metall., 1985, 33: 213
doi: 10.1016/0001-6160(85)90139-7
[20] Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 253
doi: 10.1016/j.cossms.2014.06.002
[21] Seol J B, Bae J W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta Mater., 2018, 151: 366
doi: 10.1016/j.actamat.2018.04.004
[22] Hansen N, Barlow C Y. Plastic deformation of metals and alloys [A]. Laughlin D E, Hono K. Physical Metallurgy II [M]. 5th Ed., Amsterdam: Elsevier Press, 2014: 1681
[23] Mahajan S, Green M L, Brasen D. A model for the FCC→HCP transformation, its applications, and experimental evidence [J]. Metall. Trans., 1977, 8A: 283
[24] Fujita H, Ueda S. Stacking faults and f.c.c. (γ)→h.c.p. (ε) transformation in 188-type stainless steel [J]. Acta Metall., 1972, 20: 759
doi: 10.1016/0001-6160(72)90104-6
[25] Raabe D. Physical Metallurgy [M]. 5th Ed., Oxford: Elsevier Press, 2014: 2291
[26] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., London: Elsevier Press, 2004: 121
[27] Humphreys F J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—II. The effect of second-phase particles [J]. Acta Mater., 1997, 45: 5031
doi: 10.1016/S1359-6454(97)00173-0
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[6] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[7] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[8] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[9] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[10] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[11] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[12] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[13] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[14] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[15] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.