|
|
形变及退火工艺对Fe47Mn30Co10Cr10B3双相高熵合金组织演变的影响 |
刘怡1, 涂坚1,2( ), 杨威华1, 尹瑞森3, 谭力1, 黄灿1, 周志明1,2 |
1 重庆理工大学材料科学与工程学院 重庆 400054 2 重庆理工大学重庆市模具技术重点实验室 重庆 400054 3 重庆大学航天航空学院 重庆 400044 |
|
Effect of Deformation and Annealing Treatment on Microstructure Evolution of Fe47Mn30Co10Cr10B3 Dual-Phase High-Entropy Alloy |
LIU Yi1, TU Jian1,2( ), YANG Weihua1, YIN Ruisen3, TAN Li1, HUANG Can1, ZHOU Zhiming1,2 |
1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China 2 Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054, China 3 College of Aerospace Engineering, Chongqing University, Chongqing 400044, China |
引用本文:
刘怡, 涂坚, 杨威华, 尹瑞森, 谭力, 黄灿, 周志明. 形变及退火工艺对Fe47Mn30Co10Cr10B3双相高熵合金组织演变的影响[J]. 金属学报, 2020, 56(12): 1569-1580.
Yi LIU,
Jian TU,
Weihua YANG,
Ruisen YIN,
Li TAN,
Can HUANG,
Zhiming ZHOU.
Effect of Deformation and Annealing Treatment on Microstructure Evolution of Fe47Mn30Co10Cr10B3 Dual-Phase High-Entropy Alloy[J]. Acta Metall Sin, 2020, 56(12): 1569-1580.
[1] |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
|
[2] |
Tsai M H, Yeh J W. High-entropy alloys: A critical review [J]. Mater. Res. Lett., 2014, 2: 107
doi: 10.1080/21663831.2014.912690
|
[3] |
Sharma A S, Yadav S, Biswas K, et al. High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement [J]. Mater. Sci. Eng., 2018, R131: 1
|
[4] |
Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
doi: 10.1007/s40843-017-9195-8
|
[5] |
Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Mater., 2013, 61: 2628
doi: 10.1016/j.actamat.2013.01.042
|
[6] |
Li Z M, Raabe D. Strong and ductile non-equiatomic high-entroy alloys: Design, processing, microstructure, and mechanical properties [J]. JOM, 2017, 69: 2099
doi: 10.1007/s11837-017-2540-2
pmid: 31983864
|
[7] |
Pradeep K G, Tasan C C, Yao M J, et al. Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design [J]. Mater. Sci. Eng., 2015, A648: 183
|
[8] |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
pmid: 27279217
|
[9] |
Chang X J, Zeng M Q, Liu K L, et al. Phase engineering of high-entropy alloys [J]. Adv. Mater., 2020, 32: 1907226
doi: 10.1002/adma.v32.14
|
[10] |
Sathiyamoorthi P, Kim H S. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties [J]. Prog. Mater. Sci., 2020: 100709
|
[11] |
Guo W Q, Su J, Lu W J, et al. Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy [J]. Acta Mater., 2020, 185: 45
doi: 10.1016/j.actamat.2019.11.055
|
[12] |
Jo Y H, Jung S, Choi W M, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2017, 8: 15719
pmid: 28604656
|
[13] |
He Z F, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2019, A759: 437
|
[14] |
Wei D X, Li X Q, Jiang J, et al. Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys [J]. Scr. Mater., 2019, 165: 39
doi: 10.1016/j.scriptamat.2019.02.018
|
[15] |
Lv Z P, Jiang S H, He J Y, et al. Second phase strengthening in advanced metal materials [J]. Acta Metall. Sin., 2016, 52: 1183
doi: 10.11900/0412.1961.2016.00383
|
[15] |
(吕昭平, 蒋虽合, 何骏阳等. 先进金属材料的第二相强化 [J]. 金属学报, 2016, 52: 1183)
doi: 10.11900/0412.1961.2016.00383
|
[16] |
Lv Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-rntropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
doi: 10.11900/0412.1961.2018.00372
|
[16] |
(吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553)
doi: 10.11900/0412.1961.2018.00372
|
[17] |
Wang Z W, Baker I, Cai Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
doi: 10.1016/j.actamat.2016.08.072
|
[18] |
Lei Z F, Wu Y, He J Y, et al. Snoek-type damping performance in strong and ductile high-entropy alloys [J]. Sci. Adv., 2020, 6: eaba7802
doi: 10.1126/sciadv.aba7802
pmid: 32596465
|
[19] |
Liu C T, White C L, Horton J A. Effect of boron on grain-boundaries in Ni3Al [J]. Acta Metall., 1985, 33: 213
doi: 10.1016/0001-6160(85)90139-7
|
[20] |
Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 253
doi: 10.1016/j.cossms.2014.06.002
|
[21] |
Seol J B, Bae J W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta Mater., 2018, 151: 366
doi: 10.1016/j.actamat.2018.04.004
|
[22] |
Hansen N, Barlow C Y. Plastic deformation of metals and alloys [A]. Laughlin D E, Hono K. Physical Metallurgy II [M]. 5th Ed., Amsterdam: Elsevier Press, 2014: 1681
|
[23] |
Mahajan S, Green M L, Brasen D. A model for the FCC→HCP transformation, its applications, and experimental evidence [J]. Metall. Trans., 1977, 8A: 283
|
[24] |
Fujita H, Ueda S. Stacking faults and f.c.c. (γ)→h.c.p. (ε) transformation in 188-type stainless steel [J]. Acta Metall., 1972, 20: 759
doi: 10.1016/0001-6160(72)90104-6
|
[25] |
Raabe D. Physical Metallurgy [M]. 5th Ed., Oxford: Elsevier Press, 2014: 2291
|
[26] |
Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., London: Elsevier Press, 2004: 121
|
[27] |
Humphreys F J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—II. The effect of second-phase particles [J]. Acta Mater., 1997, 45: 5031
doi: 10.1016/S1359-6454(97)00173-0
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|