|
|
690合金在模拟核电高温高压水中的电化学及原位划伤行为研究 |
郦晓慧1, 王俭秋2( ), 韩恩厚2, 郭延军1, 郑会3, 杨双亮3 |
1 华电电力科学研究院有限公司 杭州 310030 2 中国科学院金属研究所 沈阳 110016 3 国核电站运行服务技术有限公司 上海 200233 |
|
Electrochemistry and In Situ Scratch Behavior of 690 Alloy in Simulated Nuclear Power High Temperature High Pressure Water |
LI Xiaohui1, WANG Jianqiu2( ), HAN En-Hou2, GUO Yanjun1, ZHENG Hui3, YANG Shuangliang3 |
1 Huadian Electric Power Research Institute Co. , Ltd. , Hangzhou 310030, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 State Nuclear Power Plant Service Company, Shanghai 200233, China |
引用本文:
郦晓慧, 王俭秋, 韩恩厚, 郭延军, 郑会, 杨双亮. 690合金在模拟核电高温高压水中的电化学及原位划伤行为研究[J]. 金属学报, 2020, 56(11): 1474-1484.
Xiaohui LI,
Jianqiu WANG,
En-Hou HAN,
Yanjun GUO,
Hui ZHENG,
Shuangliang YANG.
Electrochemistry and In Situ Scratch Behavior of 690 Alloy in Simulated Nuclear Power High Temperature High Pressure Water[J]. Acta Metall Sin, 2020, 56(11): 1474-1484.
[1] |
Le Calvar M, De Curières I. Corrosion issues in pressurized water reactor (PWR) systems [A]. Féron D. Nuclear Corrosion Science and Engineering: Woodhead Publishing Series in Energy[M]. Cambridge: Woodhead Publishing, 2012: 473
|
[2] |
Qiu Y B, Shoji T, Lu Z P. Effect of dissolved hydrogen on the electrochemical behaviour of Alloy 600 in simulated PWR primary water at 290 ℃ [J]. Corros. Sci., 2011, 53: 1983
|
[3] |
de Araújo Figueiredo C, Bosch R W, Vankeerberghen M. Electrochemical investigation of oxide films formed on nickel alloys 182, 600 and 52 in high temperature water [J]. Electrochim. Acta, 2011, 56: 7871
|
[4] |
Cattant F, Crusset D, Féron D. Corrosion issues in nuclear industry today [J]. Mater. Today, 2008, 11: 32
|
[5] |
Ahn S J, Rao V S, Kwon H S, et al. Effects of PbO on the repassivation kinetics of alloy 690 [J]. Corros. Sci., 2006, 48: 1137
|
[6] |
Dutta R S. Corrosion aspects of Ni-Cr-Fe based and Ni-Cu based steam generator tube materials [J]. J. Nucl. Mater., 2009, 393: 343
|
[7] |
Panter J, Viguier B, Cloué J M, et al. Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600 [J]. J. Nucl. Mater., 2006, 348: 213
|
[8] |
Hwang S S, Hur D H, Han J H, et al. PWSCC of thermally treated alloy 600 pulled from a Korean plant [J]. Nucl. Eng. Des., 2002, 217: 237
|
[9] |
Diercks D R, Shack W J, Muscara J. Overview of steam generator tube degradation and integrity issues [J]. Nucl. Eng. Des., 1999, 194: 19
|
[10] |
Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 1 [J]. Corrosion, 2003, 59: 931
|
[11] |
Betova I, Bojinov M, Karastoyanov V, et al. Effect of water chemistry on the oxide film on Alloy 690 during simulated hot functional testing of a pressurised water reactor [J]. Corros. Sci., 2012, 58: 20
|
[12] |
Lim M K, Oh S D, Lee Y Z. Friction and wear of Inconel 690 and Inconel 600 for steam generator tube in room temperature water [J]. Nucl. Eng. Des., 2003, 226: 97
|
[13] |
Crum J R, Scarberry R C. Corrosion testing of INCONEL alloy 690 for PWR steam generators [J]. J. Mater. Energy Syst., 1982, 4: 125
|
[14] |
Wang J Q, Huang F, Ke W. Corrosion behaviors of inconel 690TT and incoloy 800MA steam generator tubes in high temperature high pressure water [J]. Acta Metall. Sin., 2016, 52: 1333
|
[14] |
(王俭秋, 黄 发, 柯 伟. Inconel 690TT和Incoloy 800MA蒸汽发生器管材在高温高压水中的腐蚀行为研究 [J]. 金属学报, 2016, 52: 1333)
|
[15] |
Ma Y C, Li S, Hao X C, et al. Research on the carbide precipitation and chromium depletion in the grain boundary of alloy 690 containing different contents of nitrogen [J]. Acta Metall. Sin., 2016, 52: 980
|
[15] |
(马颖澈, 李 硕, 郝宪朝等. 2种N含量不同的690合金中晶界碳化物及晶界Cr贫化研究 [J]. 金属学报, 2016, 52: 980)
|
[16] |
Chen B, Hao X C, Ma Y C, et al. Effects of nitrogen addition on microstructure and grain boundary microchemistry of Inconel alloy 690 [J]. Acta Metall. Sin., 2017, 53: 983
|
[16] |
(陈 波, 郝宪朝, 马颖澈等. 添加N对Inconel 690合金显微组织和晶界微区成分的影响 [J]. 金属学报, 2017, 53: 983)
|
[17] |
Liu X R, Zhang K, Xia S, et al. Effects of triple junction and grain boundary characters on the morphology of carbide precipitation in alloy 690 [J]. Acta Metall. Sin., 2018, 54: 404
|
[17] |
(刘锡荣, 张 凯, 夏 爽等. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响 [J]. 金属学报, 2018, 54: 404)
|
[18] |
Wang J Q, Li X H, Huang F, et al. Comparison of corrosion resistance of UNS N06690TT and UNS N08800SN in simulated primary water with various concentrations of dissolved oxygen [J]. Corrosion, 2014, 70: 598
|
[19] |
Xia D H, Song S Z, Wang J Q, et al. Research progress on sulfur-induced corrosion of alloys 690 and 800 in high temperature and high pressure water [J]. Acta Metall. Sin., 2017, 53: 1541
|
[19] |
(夏大海, 宋诗哲, 王俭秋等. 690和800合金在高温高压水中硫致腐蚀失效研究进展 [J]. 金属学报, 2017, 53: 1541)
|
[20] |
Zhang Z M, Wang J Q, Han E-H, et al. Analysis of surface oxide film formed on eletropolished alloy 690TT in high temperature and high pressure water with sequentially dissolved hydrogen and oxygen [J]. Acta Metall. Sin., 2015, 51: 85
|
[20] |
(张志明, 王俭秋, 韩恩厚等. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析 [J]. 金属学报, 2015, 51: 85)
|
[21] |
Carrette F, Lafont M C, Chatainier G, et al. Analysis and TEM examination of corrosion scales grown on Alloy 690 exposed to pressurized water at 325 ℃ [J]. Surf. Interface Anal., 2002, 34: 135
|
[22] |
Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49: 3957
|
[23] |
Zhang Z M, Wang J Q, Han E-H, et al. Influence of dissolved oxygen on oxide films of Alloy 690TT with different surface status in simulated primary water [J]. Corros. Sci., 2011, 53: 3623
|
[24] |
Kuang W J, Wu X Q, Han E-H, et al. The mechanism of oxide film formation on Alloy 690 in oxygenated high temperature water [J]. Corros. Sci., 2011, 53: 3853
|
[25] |
Sennour M, Marchetti L, Martin F, et al. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor [J]. J. Nucl. Mater., 2010, 402: 147
|
[26] |
Meng F J, Wang J Q, Han E-H, et al. Effects of scratching on corrosion and stress corrosion cracking of Alloy 690TT at 58 ℃ and 330 ℃ [J]. Corros. Sci., 2009, 51: 2761
|
[27] |
Meng F J, Wang J Q, Han E-H, et al. Microstructure near scratch on alloy 690TT and stress corrosion induced by scratching [J]. Acta Metall. Sin., 2011, 47: 839
|
[27] |
(孟凡江, 王俭秋, 韩恩厚等. 690TT合金划痕显微组织及划伤诱发的应力腐蚀 [J]. 金属学报, 2011, 47: 839)
|
[28] |
Meng F J, Han E-H, Wang J Q, et al. Localized corrosion behavior of scratches on nickel-base Alloy 690TT [J]. Electrochim. Acta, 2011, 56: 1781
|
[29] |
Meng F J, Wang J Q, Han E-H, et al. The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water [J]. Corros. Sci., 2010, 52: 927
|
[30] |
Dutta R S, Tewari R, De P K. Effects of heat-treatment on the extent of chromium depletion and caustic corrosion resistance of Alloy 690 [J]. Corros. Sci., 2007, 49: 303
|
[31] |
Dutta R S, Tewari R. Microstructural and corrosion aspects of Alloy 690 [J]. Br. Corros. J., 1999, 34: 201
|
[32] |
Lim Y S, Kim J S, Kwon H S. Pitting corrosion of the laser surface melted Alloy 600 [J]. J. Nucl. Mater., 2005, 336: 65
|
[33] |
Bosch R W, Schepers B, Vankeerberghen M. Development of a scratch test in an autoclave for the measurement of repassivation kinetics of stainless steel in high temperature high pressure water [J]. Electrochim. Acta, 2004, 49: 3029
|
[34] |
Kwon H S, Cho E A, Yeom K A. Prediction of stress corrosion cracking susceptibility of stainless steels based on repassivation kinetics [J]. Corrosion, 2000, 56: 32
|
[35] |
Li X H, Wang J Q, Han E-H, et al. High-temperature high-pressure in-situ high-speed scratching device [P]. Chin Pat, 201210250420.6, 2012
|
[35] |
(郦晓慧, 王俭秋, 韩恩厚等. 一种高温高压原位高速划伤装置 [P]. 中国专利, 201210250420.6, 2012)
|
[36] |
Han E-H, Li X H, Wang J Q. High-temperature high-pressure in-situ multichannel rapid scratch electrode system [P]. Chin Pat, 201210436247.9, 2012
|
[36] |
(韩恩厚, 郦晓慧, 王俭秋. 一种高温高压原位多道快速划伤电极系统 [P]. 中国专利, 201210436247.9, 2012)
|
[37] |
Wang J Z, Li X H, Wang J Q, et al. Development of a scratch electrode system in high temperature high pressure water [J]. Corros. Sci., 2015, 95: 125
|
[38] |
Wang J Z, Han E-H, Wang J Q. The repassivation kinetics study of Alloy 800 in high-temperature pressurized water [J]. Electrochem. Commun., 2015, 60: 100
|
[39] |
Li X H, Wang J Q, Han E-H, et al. High temperature and high pressure water circular corrosion experiment system with automatic control function [P]. Chin Pat, 201010275276.2, 2010
|
[39] |
(郦晓慧, 王俭秋, 韩恩厚等. 一种具有自动控制功能的高温高压水循环腐蚀实验系统 [P]. 中国专利, 201010275276.2, 2010)
|
[40] |
Li X H, Wang J Q, Han E-H, et al. High-temperature high-pressure in-situ scratching and corrosive wear test device [P]. Chin Pat, 201110207373.2, 2011
|
[40] |
(郦晓慧, 王俭秋, 韩恩厚等. 一种高温高压原位划伤及腐蚀磨损试验装置 [P]. 中国专利, 201110207373.2, 2011)
|
[41] |
Li X H, Wang J Q, Han E-H, et al. Corrosion behavior of nuclear grade alloys 690 and 800 in simulated high temperature and high pressure primary water of pressurized water reactor [J]. Acta Metall. Sin., 2012, 48: 941
|
[41] |
(郦晓慧, 王俭秋, 韩恩厚等. 核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水中的腐蚀行为研究 [J]. 金属学报, 2012, 48: 941)
|
[42] |
Macdonald D D, Scott A C, Wentrcek P. External reference electrodes for use in high temperature aqueous systems [J]. J. Electrochem. Soc., 1979, 126: 908
|
[43] |
Li X H, Wang J Q, Han E-H, et al. Corrosion behavior for Alloy 690 and Alloy 800 tubes in simulated primary water [J]. Corros. Sci., 2013, 67: 169
|
[44] |
Turnbull A, Psaila-Dombrowski M. A review of electrochemistry of relevance to environment-assisted cracking in light water reactors [J]. Corros. Sci., 1992, 33: 1925
|
[45] |
Sun H. Electrochemical corrosion behaviors and oxide film properties of stainless steels and nickel-based alloys in high temperature and high pressure aqueous environments [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2010
|
[45] |
(孙 华. 不锈钢和镍基合金在高温高压水环境中的电化学腐蚀行为及氧化膜特征研究 [D]. 北京: 中国科学院研究生院, 2010)
|
[46] |
da Cunha Belo M, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment [J]. Corros. Sci., 1998, 40: 447
|
[47] |
Lemire R J, McRae G A. The corrosion of Alloy 690 in high-temperature aqueous media—Thermodynamic considerations [J]. J. Nucl. Mater., 2001, 294: 141
|
[48] |
Simões A M P, Ferreira M G S, Lorang G, et al. Influence of temperature on the properties of passive films formed on AISI 304 stainless steel [J]. Electrochim. Acta, 1991, 36: 315
|
[49] |
Sun H, Wu X Q, Han E-H. Effects of temperature on the protective property, structure and composition of the oxide film on Alloy 625 [J]. Corros. Sci., 2009, 51: 2565
|
[50] |
Sun H, Wu X Q, Han E-H. Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution [J]. Corros. Sci., 2009, 51: 2840
|
[51] |
Li X H, Huang F, Wang J Q, et al. Influences of tin inclusion on corrosion and stress corrosion behaviors of alloy 690 tube in high temperature and high pressure water [J]. Acta Metall. Sin., 2011, 47: 847
|
[51] |
(郦晓慧, 黄 发, 王俭秋等. TiN夹杂物对690合金管在高温高压水中的腐蚀和应力腐蚀行为的影响 [J]. 金属学报, 2011, 47: 847)
|
[52] |
Kim J H, Hwang I S.Development of an in situ Raman spectroscopic system for surface oxide films on metals and alloys in high temperature water [J]. Nucl. Eng. Des., 2005, 235: 1029
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|