Please wait a minute...
金属学报  2020, Vol. 56 Issue (11): 1474-1484    DOI: 10.11900/0412.1961.2020.00091
  本期目录 | 过刊浏览 |
690合金在模拟核电高温高压水中的电化学及原位划伤行为研究
郦晓慧1, 王俭秋2(), 韩恩厚2, 郭延军1, 郑会3, 杨双亮3
1 华电电力科学研究院有限公司 杭州 310030
2 中国科学院金属研究所 沈阳 110016
3 国核电站运行服务技术有限公司 上海 200233
Electrochemistry and In Situ Scratch Behavior of 690 Alloy in Simulated Nuclear Power High Temperature High Pressure Water
LI Xiaohui1, WANG Jianqiu2(), HAN En-Hou2, GUO Yanjun1, ZHENG Hui3, YANG Shuangliang3
1 Huadian Electric Power Research Institute Co. , Ltd. , Hangzhou 310030, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 State Nuclear Power Plant Service Company, Shanghai 200233, China
引用本文:

郦晓慧, 王俭秋, 韩恩厚, 郭延军, 郑会, 杨双亮. 690合金在模拟核电高温高压水中的电化学及原位划伤行为研究[J]. 金属学报, 2020, 56(11): 1474-1484.
Xiaohui LI, Jianqiu WANG, En-Hou HAN, Yanjun GUO, Hui ZHENG, Shuangliang YANG. Electrochemistry and In Situ Scratch Behavior of 690 Alloy in Simulated Nuclear Power High Temperature High Pressure Water[J]. Acta Metall Sin, 2020, 56(11): 1474-1484.

全文: PDF(3121 KB)   HTML
摘要: 

利用自行搭建的高温高压水循环回路系统和高温高压原位划伤装置,研究了690合金在不同温度下的极化行为和在空气中单道划伤、在高温高压水中原位11和100 h往复划伤行为,并采用SEM和EDS对划伤后的样品进行了观察和分析。结果表明:690合金基体在单道划伤过程中划痕底部产生微裂纹,部分粒径较大TiN夹杂物易发生碎裂,而粒径较小的TiN夹杂物和基体结合处易发生开裂。在高温高压水往复划伤过程中,划痕底部沟槽内的部分金属基体碎屑脱落并有大量氧化物和微裂纹。同样存在粒径较大TiN夹杂物发生碎裂,而粒径较小的TiN夹杂物与基体结合界面易发生开裂的现象。通过高温高压原位电化学技术,测量了690合金在往复划伤过程中的电化学信号,推算了划伤过程中划痕处的瞬时峰值电流密度是基体的149~326倍。

关键词 690合金高温高压水腐蚀原位划伤    
Abstract

The abnormal shutdown of the pressurized water reactor (PWR) nuclear power plants can be primarily attributed to the rupturing of the heat transfer tube of the steam generator. Regardless, stress corrosion cracking is the most important ageing mechanism associated with the primary water of the PWR. In this work, the damage behavior of alloy 690 was systematically investigated using high-temperature and high-pressure in situ scratching and electrochemical techniques to understand its corrosion behavior and failure mode and provide a reference for controlling the manufacturing, processing, and installation of the alloy 690 tubing. Further, the polarization behavior of alloy 690 at different temperatures was investigated using the self-built high-temperature and high-pressure water circulation circuit system and the high-temperature and high-pressure in situ scratching device. Subsequently, the single-pass scratch in air and in situ reciprocating scratch of alloy 690 obtained using high-temperature and high-pressure water for 11 and 100 h, respectively, were studied. The samples after scratching were observed and analyzed via SEM and EDS. The results revealed the occurrence of microcracks at the bottom of the scratch during the single-pass scratch of alloy 690. The TiN inclusions with large particles were prone to fragmentation, whereas those with smaller particles were susceptible to cracking at the joint of the matrix. During the reciprocating scratch process in high-temperature and high-pressure water, a portion of the metal substrate debris at the bottom of the scratch groove was peeled off along with oxide particles, microcracks, and chipped debris. Further, the TiN inclusions with large particles were fragmented, whereas those with smaller particles easily cracked at the bonding interface of the substrate. The electrochemical signals of alloy 690 during the reciprocating scratch processes were measured using the high-temperature and high-pressure in situ electrochemical technology. The instantaneous peak current density at the scratch during the scratch process is 149~326 times of that associated with the substrate.

Key wordsalloy 690    high temperature high pressure water    corrosion    in situ scratch
收稿日期: 2020-03-20     
ZTFLH:  TG172.82  
基金资助:国家科技重大专项课题项目(2015ZX06002005)
作者简介: 郦晓慧,男,1984年生,博士,高级工程师
图1  高温高压水原位划伤装置示意图
图2  690合金在不同温度时的极化曲线
图3  690合金在高温高压水中的维钝电流密度和温度关系
图4  690合金在空气中单道划伤后的宏观表面、截面及划痕沟槽内部微观形貌
图5  690合金在空气中单道划伤后划痕底部TiN夹杂物形貌及EDS分析
图6  硬质合金YG8划头宏观形貌及尖部形貌
图7  690合金经11 h往复划伤后的划痕底部形貌和局部夹杂物形貌及其EDS结果
图8  690合金经100 h往复划伤后的划痕底部形貌
图9  690合金经100 h往复划伤后的划痕底部局部夹杂物形貌及其EDS结果
图10  高温高压原位往复划伤过程中电流密度随时间变化

Serial number

Point in time

s

Peak current density 10-5 A·cm-2

Average current density of front and back measuring point

10-5 A·cm-2

Ratio

112.511.08.5651.28
215.013.17.7051.70
320.511.76.9001.70
423.58.96.6001.35
525.010.16.3751.58
630.08.05.6001.43
739.58.74.7651.83
845.59.44.6802.01
947.06.84.2051.62
1048.06.84.2651.59
1149.09.94.0402.45
1256.56.03.7601.60
1358.58.63.3252.59
1460.57.23.7251.93
1561.56.03.6401.65
1666.07.03.7501.87
1768.08.73.1052.80
1870.06.03.6201.66
1971.06.33.6351.73
2077.57.53.1652.37
2185.05.03.1701.58
2287.05.03.1001.61
2388.05.73.0451.87
2494.54.83.0201.59
2596.57.73.0752.50
2697.57.23.0752.34
表1  划伤瞬间的峰值电流密度对比
[1] Le Calvar M, De Curières I. Corrosion issues in pressurized water reactor (PWR) systems [A]. Féron D. Nuclear Corrosion Science and Engineering: Woodhead Publishing Series in Energy[M]. Cambridge: Woodhead Publishing, 2012: 473
[2] Qiu Y B, Shoji T, Lu Z P. Effect of dissolved hydrogen on the electrochemical behaviour of Alloy 600 in simulated PWR primary water at 290 ℃ [J]. Corros. Sci., 2011, 53: 1983
[3] de Araújo Figueiredo C, Bosch R W, Vankeerberghen M. Electrochemical investigation of oxide films formed on nickel alloys 182, 600 and 52 in high temperature water [J]. Electrochim. Acta, 2011, 56: 7871
[4] Cattant F, Crusset D, Féron D. Corrosion issues in nuclear industry today [J]. Mater. Today, 2008, 11: 32
[5] Ahn S J, Rao V S, Kwon H S, et al. Effects of PbO on the repassivation kinetics of alloy 690 [J]. Corros. Sci., 2006, 48: 1137
[6] Dutta R S. Corrosion aspects of Ni-Cr-Fe based and Ni-Cu based steam generator tube materials [J]. J. Nucl. Mater., 2009, 393: 343
[7] Panter J, Viguier B, Cloué J M, et al. Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600 [J]. J. Nucl. Mater., 2006, 348: 213
[8] Hwang S S, Hur D H, Han J H, et al. PWSCC of thermally treated alloy 600 pulled from a Korean plant [J]. Nucl. Eng. Des., 2002, 217: 237
[9] Diercks D R, Shack W J, Muscara J. Overview of steam generator tube degradation and integrity issues [J]. Nucl. Eng. Des., 1999, 194: 19
[10] Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 1 [J]. Corrosion, 2003, 59: 931
[11] Betova I, Bojinov M, Karastoyanov V, et al. Effect of water chemistry on the oxide film on Alloy 690 during simulated hot functional testing of a pressurised water reactor [J]. Corros. Sci., 2012, 58: 20
[12] Lim M K, Oh S D, Lee Y Z. Friction and wear of Inconel 690 and Inconel 600 for steam generator tube in room temperature water [J]. Nucl. Eng. Des., 2003, 226: 97
[13] Crum J R, Scarberry R C. Corrosion testing of INCONEL alloy 690 for PWR steam generators [J]. J. Mater. Energy Syst., 1982, 4: 125
[14] Wang J Q, Huang F, Ke W. Corrosion behaviors of inconel 690TT and incoloy 800MA steam generator tubes in high temperature high pressure water [J]. Acta Metall. Sin., 2016, 52: 1333
[14] (王俭秋, 黄 发, 柯 伟. Inconel 690TT和Incoloy 800MA蒸汽发生器管材在高温高压水中的腐蚀行为研究 [J]. 金属学报, 2016, 52: 1333)
[15] Ma Y C, Li S, Hao X C, et al. Research on the carbide precipitation and chromium depletion in the grain boundary of alloy 690 containing different contents of nitrogen [J]. Acta Metall. Sin., 2016, 52: 980
[15] (马颖澈, 李 硕, 郝宪朝等. 2种N含量不同的690合金中晶界碳化物及晶界Cr贫化研究 [J]. 金属学报, 2016, 52: 980)
[16] Chen B, Hao X C, Ma Y C, et al. Effects of nitrogen addition on microstructure and grain boundary microchemistry of Inconel alloy 690 [J]. Acta Metall. Sin., 2017, 53: 983
[16] (陈 波, 郝宪朝, 马颖澈等. 添加N对Inconel 690合金显微组织和晶界微区成分的影响 [J]. 金属学报, 2017, 53: 983)
[17] Liu X R, Zhang K, Xia S, et al. Effects of triple junction and grain boundary characters on the morphology of carbide precipitation in alloy 690 [J]. Acta Metall. Sin., 2018, 54: 404
[17] (刘锡荣, 张 凯, 夏 爽等. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响 [J]. 金属学报, 2018, 54: 404)
[18] Wang J Q, Li X H, Huang F, et al. Comparison of corrosion resistance of UNS N06690TT and UNS N08800SN in simulated primary water with various concentrations of dissolved oxygen [J]. Corrosion, 2014, 70: 598
[19] Xia D H, Song S Z, Wang J Q, et al. Research progress on sulfur-induced corrosion of alloys 690 and 800 in high temperature and high pressure water [J]. Acta Metall. Sin., 2017, 53: 1541
[19] (夏大海, 宋诗哲, 王俭秋等. 690和800合金在高温高压水中硫致腐蚀失效研究进展 [J]. 金属学报, 2017, 53: 1541)
[20] Zhang Z M, Wang J Q, Han E-H, et al. Analysis of surface oxide film formed on eletropolished alloy 690TT in high temperature and high pressure water with sequentially dissolved hydrogen and oxygen [J]. Acta Metall. Sin., 2015, 51: 85
[20] (张志明, 王俭秋, 韩恩厚等. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析 [J]. 金属学报, 2015, 51: 85)
[21] Carrette F, Lafont M C, Chatainier G, et al. Analysis and TEM examination of corrosion scales grown on Alloy 690 exposed to pressurized water at 325 ℃ [J]. Surf. Interface Anal., 2002, 34: 135
[22] Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49: 3957
[23] Zhang Z M, Wang J Q, Han E-H, et al. Influence of dissolved oxygen on oxide films of Alloy 690TT with different surface status in simulated primary water [J]. Corros. Sci., 2011, 53: 3623
[24] Kuang W J, Wu X Q, Han E-H, et al. The mechanism of oxide film formation on Alloy 690 in oxygenated high temperature water [J]. Corros. Sci., 2011, 53: 3853
[25] Sennour M, Marchetti L, Martin F, et al. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor [J]. J. Nucl. Mater., 2010, 402: 147
[26] Meng F J, Wang J Q, Han E-H, et al. Effects of scratching on corrosion and stress corrosion cracking of Alloy 690TT at 58 ℃ and 330 ℃ [J]. Corros. Sci., 2009, 51: 2761
[27] Meng F J, Wang J Q, Han E-H, et al. Microstructure near scratch on alloy 690TT and stress corrosion induced by scratching [J]. Acta Metall. Sin., 2011, 47: 839
[27] (孟凡江, 王俭秋, 韩恩厚等. 690TT合金划痕显微组织及划伤诱发的应力腐蚀 [J]. 金属学报, 2011, 47: 839)
[28] Meng F J, Han E-H, Wang J Q, et al. Localized corrosion behavior of scratches on nickel-base Alloy 690TT [J]. Electrochim. Acta, 2011, 56: 1781
[29] Meng F J, Wang J Q, Han E-H, et al. The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water [J]. Corros. Sci., 2010, 52: 927
[30] Dutta R S, Tewari R, De P K. Effects of heat-treatment on the extent of chromium depletion and caustic corrosion resistance of Alloy 690 [J]. Corros. Sci., 2007, 49: 303
[31] Dutta R S, Tewari R. Microstructural and corrosion aspects of Alloy 690 [J]. Br. Corros. J., 1999, 34: 201
[32] Lim Y S, Kim J S, Kwon H S. Pitting corrosion of the laser surface melted Alloy 600 [J]. J. Nucl. Mater., 2005, 336: 65
[33] Bosch R W, Schepers B, Vankeerberghen M. Development of a scratch test in an autoclave for the measurement of repassivation kinetics of stainless steel in high temperature high pressure water [J]. Electrochim. Acta, 2004, 49: 3029
[34] Kwon H S, Cho E A, Yeom K A. Prediction of stress corrosion cracking susceptibility of stainless steels based on repassivation kinetics [J]. Corrosion, 2000, 56: 32
[35] Li X H, Wang J Q, Han E-H, et al. High-temperature high-pressure in-situ high-speed scratching device [P]. Chin Pat, 201210250420.6, 2012
[35] (郦晓慧, 王俭秋, 韩恩厚等. 一种高温高压原位高速划伤装置 [P]. 中国专利, 201210250420.6, 2012)
[36] Han E-H, Li X H, Wang J Q. High-temperature high-pressure in-situ multichannel rapid scratch electrode system [P]. Chin Pat, 201210436247.9, 2012
[36] (韩恩厚, 郦晓慧, 王俭秋. 一种高温高压原位多道快速划伤电极系统 [P]. 中国专利, 201210436247.9, 2012)
[37] Wang J Z, Li X H, Wang J Q, et al. Development of a scratch electrode system in high temperature high pressure water [J]. Corros. Sci., 2015, 95: 125
[38] Wang J Z, Han E-H, Wang J Q. The repassivation kinetics study of Alloy 800 in high-temperature pressurized water [J]. Electrochem. Commun., 2015, 60: 100
[39] Li X H, Wang J Q, Han E-H, et al. High temperature and high pressure water circular corrosion experiment system with automatic control function [P]. Chin Pat, 201010275276.2, 2010
[39] (郦晓慧, 王俭秋, 韩恩厚等. 一种具有自动控制功能的高温高压水循环腐蚀实验系统 [P]. 中国专利, 201010275276.2, 2010)
[40] Li X H, Wang J Q, Han E-H, et al. High-temperature high-pressure in-situ scratching and corrosive wear test device [P]. Chin Pat, 201110207373.2, 2011
[40] (郦晓慧, 王俭秋, 韩恩厚等. 一种高温高压原位划伤及腐蚀磨损试验装置 [P]. 中国专利, 201110207373.2, 2011)
[41] Li X H, Wang J Q, Han E-H, et al. Corrosion behavior of nuclear grade alloys 690 and 800 in simulated high temperature and high pressure primary water of pressurized water reactor [J]. Acta Metall. Sin., 2012, 48: 941
[41] (郦晓慧, 王俭秋, 韩恩厚等. 核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水中的腐蚀行为研究 [J]. 金属学报, 2012, 48: 941)
[42] Macdonald D D, Scott A C, Wentrcek P. External reference electrodes for use in high temperature aqueous systems [J]. J. Electrochem. Soc., 1979, 126: 908
[43] Li X H, Wang J Q, Han E-H, et al. Corrosion behavior for Alloy 690 and Alloy 800 tubes in simulated primary water [J]. Corros. Sci., 2013, 67: 169
[44] Turnbull A, Psaila-Dombrowski M. A review of electrochemistry of relevance to environment-assisted cracking in light water reactors [J]. Corros. Sci., 1992, 33: 1925
[45] Sun H. Electrochemical corrosion behaviors and oxide film properties of stainless steels and nickel-based alloys in high temperature and high pressure aqueous environments [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2010
[45] (孙 华. 不锈钢和镍基合金在高温高压水环境中的电化学腐蚀行为及氧化膜特征研究 [D]. 北京: 中国科学院研究生院, 2010)
[46] da Cunha Belo M, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment [J]. Corros. Sci., 1998, 40: 447
[47] Lemire R J, McRae G A. The corrosion of Alloy 690 in high-temperature aqueous media—Thermodynamic considerations [J]. J. Nucl. Mater., 2001, 294: 141
[48] Simões A M P, Ferreira M G S, Lorang G, et al. Influence of temperature on the properties of passive films formed on AISI 304 stainless steel [J]. Electrochim. Acta, 1991, 36: 315
[49] Sun H, Wu X Q, Han E-H. Effects of temperature on the protective property, structure and composition of the oxide film on Alloy 625 [J]. Corros. Sci., 2009, 51: 2565
[50] Sun H, Wu X Q, Han E-H. Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution [J]. Corros. Sci., 2009, 51: 2840
[51] Li X H, Huang F, Wang J Q, et al. Influences of tin inclusion on corrosion and stress corrosion behaviors of alloy 690 tube in high temperature and high pressure water [J]. Acta Metall. Sin., 2011, 47: 847
[51] (郦晓慧, 黄 发, 王俭秋等. TiN夹杂物对690合金管在高温高压水中的腐蚀和应力腐蚀行为的影响 [J]. 金属学报, 2011, 47: 847)
[52] Kim J H, Hwang I S.Development of an in situ Raman spectroscopic system for surface oxide films on metals and alloys in high temperature water [J]. Nucl. Eng. Des., 2005, 235: 1029
[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[3] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[4] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[5] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[6] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[7] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[8] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[9] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[10] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[11] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[12] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[13] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[14] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.