|
|
航空发动机用粉末高温合金及制备技术研究进展 |
张国庆1,4,张义文2,3,郑亮1,4( ),彭子超1 |
1. 北京航空材料研究院先进高温结构材料重点实验室 北京 100095 2. 钢铁研究总院高温材料研究所 北京 100081 3. 钢铁研究总院高温合金新材料北京市重点实验室 北京 100081 4. 中国航发增材制造技术创新中心 北京 100095 |
|
Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application |
ZHANG Guoqing1,4,ZHANG Yiwen2,3,ZHENG Liang1,4( ),PENG Zichao1 |
1. Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China 2. High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China 3. Beijing Key Laboratory of New Superalloy Materials, Central Iron and Steel Research Institute, Beijing 100081, China 4. AECC Additive Manufacturing Technology Innovation Center, Beijing 100095, China |
引用本文:
张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
Guoqing ZHANG,
Yiwen ZHANG,
Liang ZHENG,
Zichao PENG.
Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application[J]. Acta Metall Sin, 2019, 55(9): 1133-1144.
[1] | SimsC T, StoloffN S, HagelW C. Superalloys II [M]. New York: Wiley, 1987: 1 | [2] | ReedR C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 2 | [3] | PollockT M, TinS. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties [J]. J. Prop. Power, 2006, 22: 361 | [4] | ShiC X, ZhongZ Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281 | [4] | 师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281 | [5] | TianS F, ZhangG Q, LiZ, , et al. The disk superalloys and disk manufacturing technologies for advanced aero engine [J]. J.Aeronaut. Mater., 2003, 23(suppl.): 233 | [5] | 田世藩, 张国庆, 李 周等. 先进航空发动机涡轮盘合金及涡轮盘制造 [J]. 航空材料学报, 2003, 23(增刊):233) | [6] | ZouJ W, WangW X. Development and application of P/M superalloy [J]. J. Aeronaut. Mater., 2006, 26(3): 244 | [6] | 邹金文, 汪武祥. 粉末高温合金研究进展与应用 [J]. 航空材料学报, 2006, 26(3): 244) | [7] | ZhangG Q, TianS F, WangW X, , et al. Manufacturing and key technology of advanced aero-engine turbine disk [J]. Adv. Mater. Ind., 2009, (11): 16 | [7] | 张国庆, 田世藩, 汪武祥等. 先进航空发动机涡轮盘制备工艺及其关键技术 [J]. 新材料产业, 2009, (11): 16) | [8] | ZhangY W, LiuJ T. Development in powder metallurgy superalloy [J]. Mater. China, 2013, 32: 1 | [8] | 张义文, 刘建涛. 粉末高温合金研究进展 [J]. 中国材料进展, 2013, 32: 1 | [9] | QuX H, ZhangG Q, ZhangL. Applications of powder metallurgy technologies in aero-engines [J]. J. Aeronaut. Mater., 2014, 34(1): 1 | [9] | 曲选辉, 张国庆, 章 林. 粉末冶金技术在航空发动机中的应用 [J]. 航空材料学报, 2014, 34(1): 1) | [10] | SmytheJ. Superalloy powders: An amazing history [J]. Adv. Mater. Process., 2008, 11: 52 | [11] | TraceyV A, CutlerC P. High-temperature alloys from powders [J]. Powder Metall., 1981, 24: 32 | [12] | AllenM M, AtheyR L, MooreJ B. Application of powder metallurgy to superalloy forgings [J]. Met. Eng. Quart., 1970, 10(1): 20 | [13] | ZhengL, LiuY F, GorleyM J, , et al. Influencing factors on differential scanning calorimetry (DSC) analysis of superalloy II: Particle size and microstructure [J]. Rare Met. Mater. Eng., 2019, 48: 1591 | [13] | 郑 亮, 刘玉峰, Gorley M J等. 高温合金差示扫描量热分析(DSC)的影响因素研究II: 粉末粒度和显微组织 [J]. 稀有金属材料与工程, 2019, 48: 1591 | [14] | ZhengL, LiuY F, LiuY, , et al. Influencing factors on differential scanning calorimetry (DSC) analysis of superalloy III: Alloy state and heating/cooling rate [J]. Rare Met. Mater. Eng., 2019, 48: 1944 | [14] | 郑 亮, 刘玉峰, 刘 杨等. 高温合金差示扫描量热分析(DSC)的影响因素研究 III: 合金状态和升降温速率[J]. 稀有金属材料与工程, 2019, 48: 1944 | [15] | HuB F, LiuG Q, JiaC C, , et al. Development in new type high-performance P/M superalloys [J]. J. Mater. Eng., 2007, (2): 49 | [15] | 胡本芙, 刘国权, 贾成厂等. 新型高性能粉末高温合金的研究与发展 [J]. 材料工程, 2007, (2): 49) | [16] | CroxallS A, HardyM C, StoneH J, , et al. The Microstructure of RR1000 nickel-base superalloy: The FIB-SEM dual-beam approach [A]. Proceedings of the 1st International Conference on 3D Materials Science [C]. Cham: Springer, 2012: 215 | [17] | PowellA, BainK, WessmanA, , et al. Advanced supersolvus nickel powder disk alloy DOE: Chemistry, properties, phase formations and thermal stability [A]. Proceedings of the 13th Intenational Symposium of Superalloys [C]. Warrendal, PA: TMS, 2016: 189 | [18] | SmithT M, EsserB D, AntolinN, , et al. Phase transformation strengthening of high-temperature superalloys [J]. Nat. Commun., 2016, 7: 13434 | [19] | ZhangY W, ChiY. Recent developments of powder metallurgy superalloy in Russia [J]. Powder Metall. Ind., 2012, 22(5): 37 | [19] | 张义文, 迟 悦. 俄罗斯粉末冶金高温合金研制新进展 [J]. 粉末冶金工业, 2012, 22(5): 37) | [20] | ZhangY W, ChiY, LiuJ T. Recent development of new type powder metallurgy superalloys in Russia [J]. Powder Metall. Ind., 2015, 25(4): 1 | [20] | 张义文, 迟 悦, 刘建涛. 俄罗斯新型粉末高温合金研制进展 [J]. 粉末冶金工业, 2015, 25(4): 1) | [21] | LiZ, ZhangG Q, ZhangY F, , et al. Structures and properties of argon-gas atomized superalloy powders [J]. Chin. J. Nonferrous Met., 2005, 15(S2): 335 | [21] | 李 周, 张国庆, 张翼飞等. 氩气雾化高温合金粉末的制备及其组织与性能 [J]. 中国有色金属学报, 2005, 15(增刊2): 335) | [22] | LiuY, LiZ, ZhangG Q, , et al. Flow field of double layer atomizer [J]. J. Aeronaut. Mater., 2015, 35(5): 63 | [22] | 刘 杨, 李 周, 张国庆等. 双层雾化器流场的模拟研究 [J]. 航空材料学报, 2015, 35(5): 63) | [23] | ChengH C. Flow and heat transfer characteristics of superalloy droplets under processes of atomization and cooling solidification [D]. Beijing: Beihang University, 2017 | [23] | 程会川. 高温合金熔滴在雾化冷却凝固过程中的流动换热特性研究 [D]. 北京: 北京航空航天大学, 2017 | [24] | ZeoliN, GuS. Computational validation of an isentropic plug nozzle design for gas atomisation [J]. Comput. Mater. Sci., 2008, 42: 245 | [25] | SunJ F, CaoF Y, CuiC S, , et al. Dynamic behaviors of gas velocity field during metal atomization [J]. Powder Metall. Technol., 2002, 20(2): 79 | [25] | 孙剑飞, 曹福洋, 崔成松等. 金属雾化过程中气体流场动力学行为 [J]. 粉末冶金技术, 2002, 20(2): 79) | [26] | CzischC, FritschingU. Flow-adapted design option for free-fall atomizers [J]. Atomization Sprays, 2008, 18: 511 | [27] | SiC R, ZhangX J, WangJ B, , et al. Design and evaluation of a Laval-type supersonic atomizer for low-pressure gas atomization of molten metals [J]. Int. J. Miner. Metall. Mater., 2014, 21: 627 | [28] | TingJ, AndersonI E. A computational fluid dynamics (CFD) investigation of the wake closure phenomenon [J]. Mater. Sci. Eng., 2004, A379: 264 | [29] | ZhaoW J, CaoF Y, NingZ L, , et al. A computational fluid dynamics (CFD) investigation of the flow field and the primary atomization of the close coupled atomizer [J]. Comput. Chem. Eng., 2012, 40: 58 | [30] | LiuY. Research on the flow field of gas and the atomization of molten metal [D]. Beijing: Beijing Institute of Aeronautical Materials, 2013 | [30] | 刘 杨. 雾化气体流场及金属液流雾化行为的研究 [D]. 北京: 北京航空材料研究院, 2013 | [31] | LiuN, LiZ, ZhangG Q, , et al. Oxidation characteristics of nickel-based superalloy powders prepared by argon gas atomization [J]. Chin. J. Rare Met., 2011, 35: 481 | [31] | 刘 娜, 李 周, 张国庆等. 氩气雾化镍基高温合金粉末的氧化特性研究 [J]. 稀有金属, 2011, 35: 481 | [32] | HuronE S, RothP G. The influence of inclusions on low cycle fatigue life in a P/M Ni-base disk superalloy [A]. Superalloys 1996 [C]. Warrendal, PA: TMS, 1996: 359 | [33] | KantzosP, BonacuseP, TelesmanJ, , et al. Effect of powder cleanliness on the fatigue behavior of powder metallurgy Ni-disk alloy Udimet 720 [A]. Superalloys 2004 [C]. Warrendal, PA: TMS, 2004: 409 | [34] | AttallahM M, JenningsR, WangX Q, , et al. Additive manufacturing of Ni-based superalloys: The outstanding issues [J]. MRS Bull., 2016, 41: 758 | [35] | MourerD P, RaymondE, GaneshS, , et al. Dual alloy disk development [A]. Superalloys 1996 [C]. Warrendal, PA: TMS, 1996: 637 | [36] | WangY, ZouJ W, ZhangG Q, , et al. Research on gradient heat treatment of dual-property disk for alloy FGH96 [J]. Mater. Sci. Forum, 2013, 747-748: 783 | [37] | MollJ H, SehwertzH H, ChandhokV K. PM dual property wheels for small engines [J]. Met. Powder Report, 1983, 38: 547 | [38] | WangS Y, LiH Q, YangH T. Superplastic isothermal forging technology of P/M superalloy [J]. J. Aeronaut. Mater. 2007, 27(5): 30 | [38] | 王淑云, 李惠曲, 杨洪涛. 粉末高温合金超塑性等温锻造技术研究 [J]. 航空材料学报, 2007, 27(5): 30) | [39] | FurrerD. Forging aerospace components [J]. Adv. Mater. Process., 1999, 155: 33 | [40] | OhuchiK, NakazawaY, MatsunoK I. Isothermal forging of nickel-base superalloy modified IN-100 disk [J]. Mater. Trans., 1989, 30: 67 | [41] | LiQ, HanY F, XiaoC B, , et al. R&D status of die materials for Isothermal forging at high temperature [J]. Mater. Rev., 2004, 18(4): 9 | [41] | 李 青, 韩雅芳, 肖程波等. 等温锻造用模具材料的国内外研究发展状况 [J]. 材料导报, 2004, 18(4): 9) | [42] | XiaoC B, HanY F, SongJ X, , et al. Study on DM02 alloy used as die material for iso-thermal forging at 1050~1100 ℃ in air [J]. J. Mater. Eng., 2005, (2): 44 | [42] | 肖程波, 韩雅芳, 宋尽霞等. 1050~1100 ℃大气下等温锻造用模具材料DM02合金研究 [J]. 材料工程, 2005, (2): 44) | [43] | ZhaoH B, WuC X, GuoL. Development of a die material for iso-thermal forging at 1100 ℃ [J]. J. Mater. Eng., 2009,(suppl.): 18 | [43] | 赵会彬, 吴昌新, 郭 灵. 1100 ℃等温锻造用模具材料的研制 [J]. 材料工程, 2009, (增刊):18) | [44] | ZhengY R, ZhengL, ZengQ, , et al. Formation of primary M6C carbide and its effect on cast die superalloys with high content of tungsten [J]. Acta Metall. Sin., 2004, 40: 285 | [44] | 郑运荣, 郑 亮, 曾 强等. 初生M6C的形成及其对高钨铸造模具高温合金的影响 [J]. 金属学报, 2004, 40: 285 | [45] | ZhengL, ZhangG Q, LeeT L, , et al. The effects of Ta on the stress rupture properties and microstructural stability of a novel Ni-base superalloy for land-based high temperature applications [J]. Mater. Des., 2014, 61: 61 | [46] | ZhouT J, FengW, ZhaoH B, , et al. Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 45 | [47] | ZhouT J, DingH S, MaX P, , et al. Microstructure and stress-rupture life of high W-content cast Ni-based superalloy after 1000-1100 ℃ thermal exposures [J]. Mater. Sci. Eng., 2018, A725: 299 | [48] | LiM Z, CoakleyJ, IsheimD, , et al. Influence of the initial cooling rate from γ′ supersolvus temperatures on microstructure and phase compositions in a nickel superalloy [J]. J. Alloys Compd., 2018, 732: 765 | [49] | PengZ C, TianG F, JiangJ, , et al. Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy [J]. Mater. Sci. Eng., 2016, A676: 441 | [50] | LiM Z, PhamM S, PengZ C, , et al. Creep deformation mechanisms and CPFE modelling of a nickel-base superalloy [J]. Mater. Sci. Eng., 2018, A718: 147 | [51] | XuW Y, PengZ C, LiM Z, , et al. Microstructure analysis and creep behaviour modelling of powder metallurgy superalloy [J]. Mater. Sci. Forum, 2018, 913: 134 | [52] | ZhengL, LeeT L, LiuN, , et al. Numerical and physical simulation of rapid microstructural evolution of gas atomised Ni superalloy powders [J]. Mater. Des., 2017, 117: 157 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|