Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 967-975    DOI: 10.11900/0412.1961.2014.00704
  本期目录 | 过刊浏览 |
镍基粉末高温合金中微量元素Hf的作用*
张义文1,2(),胡本芙3
2 钢铁研究总院高温合金新材料北京市重点实验室, 北京 100081
3 北京科技大学材料科学与工程学院, 北京 100083
FUNCTION OF MICROELEMENT Hf IN POWDER METALLURGY NICKEL-BASED SUPERALLOYS
Yiwen ZHANG1,2(),Benfu HU3
1 High Temperature Material Institute, Central Iron and Steel Research Institute, Beijing 100081
2 Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

张义文,胡本芙. 镍基粉末高温合金中微量元素Hf的作用*[J]. 金属学报, 2015, 51(8): 967-975.
Yiwen ZHANG, Benfu HU. FUNCTION OF MICROELEMENT Hf IN POWDER METALLURGY NICKEL-BASED SUPERALLOYS[J]. Acta Metall Sin, 2015, 51(8): 967-975.

全文: PDF(10823 KB)   HTML
摘要: 

利用FEG-SEM, TEM, AES和EDS分析技术以及物理化学相分析等方法, 系统地研究了微量元素Hf在镍基粉末高温合金中的作用. 结果表明: Hf以固溶态分布在枝晶间g固溶体内, 有助于减少原始粉末颗粒边界组织. Hf促进g 相形态失稳, 导致大尺寸立方状g 相发生分裂, 更快地进入g 相低能稳定的择优形态. Hf主要分布在g 相和MC型碳化物中, 改变g 相和MC型碳化物及g固溶体相间合金元素的再分配, 有利于消除合金的缺口敏感性, 改善合金综合力学性能.

关键词 粉末高温合金HfMC型碳化物g′ 相的形态稳定性原始粉末颗粒边界    
Abstract

Hafnium (Hf) is one of the most important microelements in powder metallurgy (P/M) superalloy. Hf modifies the microstructure and drastically improves mechanical properties in P/M superalloy. The effect of Hf in a nickel-based P/M superalloy was systematically studied by means of FEG-SEM, TEM, AES, EDS and physical and chemical phase analysis. Hf mainly distributes at interdendritic region of the solidification powder in form of solid solution, which is helpful to reduce prior particle boundary (PPB). Hf facilitates morphology of g′ phase to be unstable and enhances the large cubic g phase to split into smaller ones, so the g′ phase turns into a stable state with a lower energy faster. Hf is mainly distributed in g′ phase and MC carbides, which changes the distribution of element between the g′ phase, MC and g solid solution, which is beneficial to eliminate notch sensitivity and improves overall mechanical properties of the alloy.

Key wordspowder metallurgy superalloy    Hf    MC carbide    g′ phase morphology stability    prior particle boundary (PPB)
    
基金资助:*国家国际科技合作计划项目2014DFR50330和中俄政府间科技合作项目CR14-20资助
图1  含0.30%Hf 的FGH97 合金粉末颗粒内MC′ 型碳化物的TEM像、[01ˉ3] 晶带轴的SAED谱和EDS
图2  无Hf和含0.30%Hf的FGH97合金热等静压态显微组织的OM像
图3  热等静压态无Hf 的FGH97 合金原始颗粒边界(PPB)组织中MC型碳化物的TEM像、[1ˉ23] 晶带轴的SAED谱和EDS
Hf content g MC g M3B2
0.16 84.4 7.5 6.9 1.2
0.30 85.0 8.0 5.0 2.0
0.58 87.1 8.3 3.3 1.3
0.89 85.4 10.1 3.0 1.5
Average 85.5 8.5 4.5 1.5
表1  标准热处理态FGH97合金中Hf在各相中的分配量
Hf content / % R1 R2
0.16 1∶0.089 1∶0.081
0.30 1∶0.094 1∶0.059
0.58 1∶0.095 1∶0.038
0.89 1∶0.118 1∶0.036
Average 1∶0.1 1∶0.05
表2  标准热处理态FGH97 合金中Hf 在g′ 相与MC型碳化物中及在g′相与g相中的分配比
图4  标准热处理态不同Hf含量FGH97合金中g’ 相形貌的SEM像
图5  不同Hf含量的FGH97合金在不同冷却速率下g’ 相形貌的SEM像
图6  含0.30%Hf的FGH97合金在750 ℃时效过程中g’ 相形貌的SEM像
图7  含0.30%Hf的FGH97合金在不同温度下时效100 h后g’ 相形貌的SEM像
图8  标准热处理态不同Hf含量的FGH97合金在650 ℃时的拉伸性能
图9  标准热处理态不同Hf含量的FGH97合金在650 ℃, 1020 MPa条件下光滑试样和缺口试样的持久寿命
图10  标准热处理态不同Hf含量的FGH97合金在750 ℃, 460 MPa条件下不同时间的蠕变伸长率
图11  标准热处理态不同Hf含量的FGH97合金在650 ℃的疲劳裂纹扩展速率
图12  标准热处理态含0.30%Hf的FGH97合金650 ℃疲劳裂纹扩展速率试样断口起始区及扩展区形貌
[1] Cochardt A W, Township W, County A. US Pat, 3005705, 1961
[2] Academic Committee of the Superalloys CSM. China Superalloys Handbook. Beijing: China Zhijian Publishing House, 2012: 1 (中国金属学会高温材料分会. 中国高温合金手册(上), 北京: 中国质检出版社, 2012: 1)
[3] Davis J R. ASM Specialty Handbook: Nickel, Cobalt and Their Alloys. Materials Park: ASM International, 2000: 203
[4] Evans D J, Eng R D. In: Hausner H H, Antes H W, Smith G D eds., Modern Developments in Powder Metallurgy. Vol.14, Princeton: MPIF and APMI, 1981: 51
[5] Chang M, Koul A K, Cooper C. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Proc 8th Int Symp on Superalloy, Pennsylvania: TMS, 1996: 677
[6] Miner R V. Metall Trans, 1977; 8A: 259
[7] Larson J M, Volin T E, Larson F G. In: Braun J D, Arrowsmith H W, Mccall J L eds., Microstructural Science. Vol.5, New York: American Elsevier Pub., 1977: 209
[8] Warren R, Ingesten N G, Winberg L, R?nnhult T. Powder Metall, 1984; 27: 141
[9] Radavich J, Furrer D, Carneiro T, Lemsky J. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Proc 11th Int Symp on Superalloy, Pennsylvania: TMS, 2008: 63
[10] Schirra J J, Reynolds P L, Huron E S, Bain K R, David P, Mourer D P. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Proc 10th Int Symp on Superalloy, Warrendale: TMS, 2004: 341
[11] Wlodek S T, Kelly M, Alden D. In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Sissinger R D, Klarstrom D L eds., Proc 7th Int Symp on Superalloy, Pennsylvania: TMS, 1992: 467
[12] Locq D, Caron P. J Aerospace Lab, 2011; 3: 1
[13] Hardy M C, Zirbel B, Shen G, Shankar R. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Proc 10th Int Symp on Superalloy, Warrendale: TMS, 2004: 83
[14] Starink M J, Reed P A. Mater Sci Eng, 2008; A491: 279
[15] Domingue J A, Boeseh W J, Radavich J F. In: Tien J K, Wlodek S T, Morrow H III eds., Proc 4th Int Symp on Superalloy, Ohio: ASM, 1980: 335
[16] Hu B F, Chen H M, Song D, Li H Y. Acta Metall Sin, 2005; 41: 1042 (胡本芙, 陈焕铭, 宋 铎, 李慧英. 金属学报, 2005; 41: 1042)
[17] Xia P C, Yu J J, Sun X F, Guan H R, Hu Z Q. J Shandong Univ Sci Technol (Nat Sci), 2009; 28: 51 (夏鹏成, 于金江, 孙晓峰, 管恒荣, 胡壮麒. 山东科技大学学报(自然科学版), 2009; 28: 51)
[18] Lifshitz I M, Slyzov V V. J Phys Chem Solids, 1961; 19: 35
[19] Wagner C. Z Elektrochem, 1961; 65: 581
[20] Menzies R G, Bricknell R H, Craven A J. Philos Mag, 1980; 41A: 493
[21] Qiu C L, Attallah M M, Wu X H, Andrews P. Mater Sci Eng, 2013; A564: 176
[22] Doi M, Miyazaki T, Wakatsuki T. Mater Sci Eng, 1985; 74: 139
[23] Miyazaki T, Imamura H, Mori H, Kozakai T. J Mater Sci, 1981; 16: 1197
[24] Qiu Y Y. J Alloys Compd, 1998; 270: 145
[25] Qiu Y Y. Acta Mater, 1996; 44: 4969
[26] Kaufman M J, Voorhees P W, Johnson W C, Biancaniello F S. Metall Trans, 1989; 20A: 2171
[27] Kotval P S, Venables J D, Calder R W. Metall Trans, 1972; 3: 453
[28] Zhen B L, Zhang S J. Central Iron Steel Res Inst Technol Bull, 1981; 1(1): 65 (甄宝林, 张绍津. 钢铁研究总院学报, 1981; 1(1): 65)
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[3] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[4] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[5] 郝志博, 葛昌纯, 黎兴刚, 田甜, 贾崇林. 热处理对选区激光熔化镍基粉末高温合金组织与力学性能的影响[J]. 金属学报, 2020, 56(8): 1133-1143.
[6] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[7] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[8] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[9] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[10] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[11] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[12] 张义文,胡本芙. 拓扑密堆μ相对含Hf的镍基粉末高温合金组织和性能的影响*[J]. 金属学报, 2016, 52(4): 445-454.
[13] 张义文,韩寿波,贾建,刘建涛,胡本芙. 微量元素Hf对镍基粉末高温合金FGH97显微组织的影响[J]. 金属学报, 2015, 51(10): 1219-1226.
[14] 赵云松,张剑,骆宇时,唐定中,冯强. Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响[J]. 金属学报, 2015, 51(10): 1261-1272.
[15] 陈晓燕, 周亦胄, 张朝威, 金涛, 孙晓峰. Hf对一种高温合金与陶瓷材料润湿性及界面反应的影响*[J]. 金属学报, 2014, 50(8): 1019-1024.