|
|
中国材料基因工程研究进展 |
宿彦京, 付华栋, 白洋, 姜雪, 谢建新( ) |
北京科技大学新材料技术研究院 北京材料基因工程高精尖创新中心 北京 100083 |
|
Progress in Materials Genome Engineering in China |
SU Yanjing, FU Huadong, BAI Yang, JIANG Xue, XIE Jianxin( ) |
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
宿彦京, 付华栋, 白洋, 姜雪, 谢建新. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56(10): 1313-1323.
Yanjing SU,
Huadong FU,
Yang BAI,
Xue JIANG,
Jianxin XIE.
Progress in Materials Genome Engineering in China[J]. Acta Metall Sin, 2020, 56(10): 1313-1323.
[1] |
White House Office of Science and Technology Policy. Materials genome initiative for global competitiveness [EB/OL]. (2011-06). https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
|
[2] |
National Science and Technology Council, Committee on Technology and Subcommittee on the MGI Initiative. Materials Genome Initiative—Strategic Plan [EB/OL]. (2014). https://www.mgi.gov/sites/.default/files/documents/mgi_strategic_plan_dec_2014.pdf
|
[3] |
Scott T, Walsh A, Anderson B, et al. Economic analysis of national needs for technology infrastructure to support the materials genome initiative [EB/OL]. (2018-04). https://www.nist.gov/system/files/documents/2018/06/26/mgi_econ_analysis.pdf
|
[4] |
Minerals The, Metals & Materials Society. Creating the next-generation materials genome initiative workforce [EB/OL]. (2019). https://www.tms.org/portal/PUBLICATIONS/Studies/MGI_Workforce/portal/Publications/Studies/MGIworkforce/MGIworkforce.aspx?hkey=830f10ad-47c7-4ea8-8563-1bba0c8ae586
|
[5] |
Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
doi: 10.1038/s41586-019-1145-z
pmid: 31043727
|
[6] |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
pmid: 30429610
|
[7] |
Liu B Y, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations [J]. Science, 2019, 365: 73
doi: 10.1126/science.aaw2843
pmid: 31273119
|
[8] |
Zhou X L, Feng Z Q, Zhu L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579: 67
pmid: 32094661
|
[9] |
Zhang T T, Jiang Y, Song Z D, et al. Catalogue of topological electronic materials [J]. Nature, 2019, 566: 475
pmid: 30814713
|
[10] |
Tang F, Hoi C P, Vishwanath A, et al. Comprehensive search for topological materials using symmetry indicators [J]. Nature, 2019, 566: 486
doi: 10.1038/s41586-019-0937-5
pmid: 30814709
|
[11] |
Luo J J, Wang X M, Li S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites [J]. Nature, 2018, 563: 541
pmid: 30405238
|
[12] |
Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells [J]. Nat. Photonics, 2019, 13: 460
doi: 10.1038/s41566-019-0398-2
|
[13] |
Liu T C, Lin L P, Bi X X, et al. In situ quantification of interphasial chemistry in Li-ion battery [J]. Nat. Nanotechnol., 2019, 14: 50
doi: 10.1038/s41565-018-0284-y
pmid: 30420761
|
[14] |
Liu T C, Dai A, Lu J, et al. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery [J]. Nat. Commun., 2019, 10: 4721
doi: 10.1038/s41467-019-12626-3
pmid: 31624258
|
[15] |
Shen Z H, Wang J J, Jiang J Y, et al. Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics [J]. Nat. Commun., 2019, 10: 1843
doi: 10.1038/s41467-019-09874-8
pmid: 31015446
|
[16] |
Jiang J, Sun X, Chen X C, et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy [J]. Nat. Commun., 2019, 10: 4145
doi: 10.1038/s41467-019-12056-1
pmid: 31515482
|
[17] |
Zhang K, Zhou Y, Xiao C, et al. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect [J]. Sci. Adv., 2019, 5: eaax6946
doi: 10.1126/sciadv.aaw9485
pmid: 32064310
|
[18] |
Feng H L, Wang C Y. Electronic structure and multi-scale behaviour for the dislocation-doping complex in the gamma phase of nickel-base superalloys [J]. RSC Adv., 2017, 7: 19124
doi: 10.1039/C7RA00876G
|
[19] |
Wen M R, Wang C Y. Transition-metal alloying of γ'-Ni3Al: Effects on the ideal uniaxial compressive strength from first-principles calculations [J]. Phys. Rev., 2018, 97B: 024101
|
[20] |
Miao N H, Xu B, Zhu L G, et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets [J]. J. Am. Chem. Soc., 2018, 140: 2417
doi: 10.1021/jacs.7b12976
pmid: 29400056
|
[21] |
Peng Q, Zhou J, Chen J T, et al. Cu single atoms on Ti2CO2 as a highly efficient oxygen reduction catalyst in a proton exchange membrane fuel cell [J]. J. Mater. Chem., 2019, 7A: 26062
|
[22] |
Li J Y, Zhang Y, Li J X, et al. A device for high throughput preparation of multicomponent gradient metal materials [P].ZL 201610267117.5, 2018
|
[22] |
(李静媛, 张 源, 李建兴等. 一种高通量制备多组分梯度金属材料的装置 [P]. 中国专利, 201610267117.5, 2018)
|
[23] |
Wu H Y, Li J, Liu F, et al. A high-throughput methodology search for the optimum cooling rate in an advanced polycrystalline nickel base superalloy [J]. Mater. Des., 2017, 128: 176
doi: 10.1016/j.matdes.2017.05.025
|
[24] |
Wang Z C, Tavabi A H, Jin L, et al. Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy [J]. Nat. Mater., 2018, 17: 221
doi: 10.1038/s41563-017-0010-4
pmid: 29403052
|
[25] |
Chen K, Huang R Q, Li Y, et al. Rafting-enabled recovery avoids recrystallization in 3D-printing-repaired single-crystal superalloys [J]. Adv. Mater., 2020, 32: 1907164
doi: 10.1002/adma.v32.12
|
[26] |
He G, Wei Z X, Feng Z P, et al. Combinatorial laser molecular beam epitaxy system integrated with specialized low-temperature scanning tunneling microscopy [J]. Rev. Sci. Instrum., 2020, 91: 013904
doi: 10.1063/1.5119686
pmid: 32012528
|
[27] |
Yuan J, Stanev V, Gao C, et al. Recent advances in high-throughput superconductivity research [J]. Supercond. Sci. Technol., 2019, 32: 123001
doi: 10.1088/1361-6668/ab51b1
|
[28] |
Song Z M, Hong B, Zhu X D, et al. CdS/Au/Ti/Pb(Mg1/3Nb2/3)0.7-Ti0.3O3 photocatalysts and biphotoelectrodes with ferroelectric polarization in single domain for efficient water splitting [J]. Appl. Catal., 2018, 238B: 248
|
[29] |
Jiang L, Ye X X, Wang D J, et al. Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys [J]. Nucl. Sci. Tech., 2020, 31: 6
doi: 10.1007/s41365-019-0719-7
|
[30] |
Su Y Q, Yao X F, Wang S, et al. Simultaneous determination of virtual fields and material parameters for thermo-mechanical coupling deformation in orthotropic materials [J]. Mech. Mater., 2018, 124: 33
doi: 10.1016/j.mechmat.2018.05.008
|
[31] |
Fu C, Chen Y D, Li L F, et al. Evaluation of service conditions of high pressure turbine blades made of DS Ni-base superalloy by artificial neural networks [J]. Mater. Today Commun., 2020, 22: 100838
|
[32] |
Yang X Y, Wang Z G, Zhao X S, et al. MatCloud: A high-throughput computational infrastructure for integrated management of materials simulation, data and resources [J]. Comput. Mater. Sci., 2018, 146: 319
doi: 10.1016/j.commatsci.2018.01.039
|
[33] |
Zhang Q, Chang D P, Zhai X Y, et al. OCPMDM: Online computation platform for materials data mining [J]. Chemom. Intell. Lab. Syst., 2018, 177: 26
doi: 10.1016/j.chemolab.2018.04.004
|
[34] |
Wang Y, Liu Y J, Song S W, et al. Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach [J]. Nat. Commun., 2018, 9: 2444
pmid: 29934564
|
[35] |
Lu S H, Zhou Q H, Ouyang Y X, et al. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning [J]. Nat. Commun., 2018, 9: 3405
doi: 10.1038/s41467-018-05761-w
pmid: 30143621
|
[36] |
Wen C, Zhang Y, Wang C X, et al. Machine learning assisted design of high entropy alloys with desired property [J]. Acta Mater., 2019, 170: 109
doi: 10.1016/j.actamat.2019.03.010
|
[37] |
Zhang Y, Wen C, Wang C X, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models [J]. Acta Mater., 2020, 185: 528
doi: 10.1016/j.actamat.2019.11.067
|
[38] |
Liu P, Huang H Y, Antonov S, et al. Machine learning assisted design of γ′-strengthened Co-base superalloys with multi- performance optimization [J]. npj Comput. Mater., 2020, 6: 62
doi: 10.1038/s41524-020-0334-5
|
[39] |
Wang C S, Fu H D, Jiang L, et al. A property-oriented design strategy for high performance copper alloys via machine learning [J]. npj Comput. Mater., 2019, 5: 87
doi: 10.1038/s41524-019-0227-7
|
[40] |
Shanghai Jiaotong University, Sichuan University, Beijing University of Science and Technology, et al. T/CSTM 00120-2019 General rule for materials genome engineering data [S]. Beijing: Metallurgical Industry Press, 2019
|
[40] |
(上海交通大学, 四川大学, 北京科技大学, 等. T/CSTM 00120-2019 材料基因工程数据通则 [S].北京: 冶金工业出版社, 2019)
|
[41] |
Wang H, Xiang X D, Zhang L T. Data+AI: The core of materials genomic engineering [J]. Sci. Technol. Rev., 2018, 36(14): 15
|
[41] |
(汪 洪, 项晓东, 张澜庭. 数据+人工智能是材料基因工程的核心 [J]. 科技导报, 2018, 36(14): 15)
|
[42] |
Wang Z D, Cichocka M O, Luo Y, et al. Controllable direct-syntheses of delaminated MWW-type zeolites [J]. Chin. J. Catal., 2020, 41: 1062
doi: 10.1016/S1872-2067(20)63545-8
|
[43] |
Yang W M, Wang Z D. Development of zeolite catalysts for production of ethylbenzene [J]. Hydrocarbon Process., 2019, 3: 47
|
[44] |
Luo Y, Smeets S, Peng F, et al. Synthesis and structure determination of large-pore zeolite SCM-14 [J]. Chem. Eur. J., 2017, 23: 16829
doi: 10.1002/chem.201703361
pmid: 28967679
|
[45] |
Luo Y, Smeets S, Wang Z D, et al. Synthesis and structure determination of SCM-15: A 3D large pore zeolite with interconnected straight 12×12×10-ring channels [J]. Chem. Eur. J., 2019, 25: 2184
doi: 10.1002/chem.201805187
pmid: 30521132
|
[46] |
Zhu J M, Wang D, Gao Y P, et al. Linear-superelastic metals by controlled strain release via nanoscale concentration-gradient engineering [J]. Mater. Today, 2020, 33: 17
doi: 10.1016/j.mattod.2019.10.003
|
[47] |
Wang H, Bao Q L, Zhou G, et al. Dynamic recrystallization initiated by direct grain reorientation at high-angle grain boundary in α-titanium [J]. J. Mater. Res., 2019, 34: 1608
doi: 10.1557/jmr.2019.125
|
[48] |
Hua K, Zhang Y D, Gan W M, et al. Hot deformation behavior originated from dislocation activity and β to α phase transformation in a metastable β titanium alloy [J]. Int. J. Plast., 2019, 119: 200
doi: 10.1016/j.ijplas.2019.03.011
|
[49] |
Zhang X X, Zheng Z, Gao Y, et al. Progress in high throughput fabrication and characterization of metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
|
[49] |
(张学习, 郑 忠, 高 莹等. 金属基复合材料高通量制备及表征技术研究进展 [J]. 金属学报, 2019, 55: 109)
doi: 10.11900/0412.1961.2018.00307
|
[50] |
Chen J, Lan H, Cao Y G, et al. Application of composite phosphor ceramics by tape-casting in white light-emitting diodes [J]. J. Alloys Compd., 2017, 709: 267
doi: 10.1016/j.jallcom.2017.03.034
|
[51] |
Yang K C, Wang J, Yao Q R, et al. Phase diagrams of permanent magnet alloys: Binary rare earth alloy systems [J]. J. Rare Earths, 2019, 37: 1040
doi: 10.1016/j.jre.2019.02.003
|
[52] |
Wang J F, Zhou H B, Zhu S J, et al. Microstructure, mechanical properties and deformation mechanisms of an as-cast Mg-Zn-Y-Nd alloy for stent applications [J]. J. Mater. Sci. Technol., 2019, 35: 1211
doi: 10.1016/j.jmst.2019.01.007
|
[53] |
Yan B J, Cheng L, Li B Q, et al. Bi-directional prediction of structural characteristics and effective thermal conductivities of composite fuels through learning from finite element simulation results [J]. Mater. Des., 2020, 189: 108483
doi: 10.1016/j.matdes.2020.108483
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|