Please wait a minute...
金属学报  2015, Vol. 51 Issue (4): 499-512    DOI: 10.11900/0412.1961.2014.00345
  本期目录 | 过刊浏览 |
宽弦航空叶片Bridgeman定向凝固组织数值模拟
唐宁1, 王艳丽2, 许庆彦1(), 赵希宏2, 柳百成1
1 清华大学材料学院先进成形制造教育部重点实验室, 北京 100084
2 北京航空材料研究院先进高温结构材料重点实验室, 北京 100095
NUMERICAL SIMULATION OF DIRECTIONAL SOLIDIFIED MICROSTRUCTURE OF WIDE-CHORD AERO BLADE BY BRIDGEMAN PROCESS
TANG Ning1, WANG Yanli2, XU Qingyan1(), ZHAO Xihong2, LIU Baicheng1
1 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2 Science and Technology on Advanced High Temperature Structure Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

唐宁, 王艳丽, 许庆彦, 赵希宏, 柳百成. 宽弦航空叶片Bridgeman定向凝固组织数值模拟[J]. 金属学报, 2015, 51(4): 499-512.
Ning TANG, Yanli WANG, Qingyan XU, Xihong ZHAO, Baicheng LIU. NUMERICAL SIMULATION OF DIRECTIONAL SOLIDIFIED MICROSTRUCTURE OF WIDE-CHORD AERO BLADE BY BRIDGEMAN PROCESS[J]. Acta Metall Sin, 2015, 51(4): 499-512.

全文: PDF(7910 KB)   HTML
摘要: 

建立了宽弦叶片定向凝固过程的宏微观数理模型, 计算结果与实验结果吻合, 铸件表面大部分晶粒的位置和形状一一对应. 通过数值模拟预测了不同引晶方式和拉速下温度场和晶粒组织的演变过程, 研究了2种因素的影响规律. 通过建立糊状区形态和晶粒数的数学判据, 实现了温度场和微观组织优劣的定量评价, 基于判据揭示了工艺参数对糊状区和晶粒的影响机理, 从而对工艺进行了定量的优化. 研究表明, 采用叶身正下方的引晶方式, 有利于增加柱状晶数目, 提高晶粒平行度, 防止横向晶界生成, 同时还可以在糊状区形状保持平直的前提下使用较高拉速, 从而避免晶粒粗化, 并提高生产率.

关键词 航空发动机宽弦叶片定向凝固数值模拟柱状晶    
Abstract

The aero turbine is spun by high-temperature and high-pressure burning gases. The practice has proven that the directional solidification (DS) turbine blade with perfect column grains has still excellent high-temperature performance in this kind of working environment. This means that the size and orientation of column grains have great influence on the high-temperature property and performance of turbine blades. On the other hand, the high-quality blade is not easy to be produced in DS process due to the difficulty of obtaining the desired temperature field needed to produce the grains with ideal morphology. In addition, the growth of columnar grains in the wide-chord hollow guide blade is obstructed by the complex camber and the platform. How to produce turbine blades with desired microstructures is the key problem in the DS process. Numerical simulation of the DS process is an effective way to investigate the growth and the morphology of the grains and hence to optimize the process. In this work, a mathematical-physical model for simulating the DS process of wide-chord blade is established in which nucleation and grain growth in the blade in the DS process are modeled by the cellular automation (CA) method with multi-scale dynamic bidirectional coupling technology. Some general analytic indicators are proposed to assess the morphology of mushy zone and grains in a blade quantitatively. Based on the simulated results by using the usual starter blocks 1, 2 and 3, a new starter block is designed considering numerically controlled cutting. Temperature fields and grains in DS processes and corresponding indicators at different withdrawal rates for above 4 starter blocks are numerically predicted to investigate the influences of varying these technological parameters, and hence to determine the influence mechanism to the DS process. For comparison, the DS validation experiments by using starter blocks 1, 2 and 3 have been carried out. The numerical and experimental results agree well, their morphologies including those faulty grains are similar. It is found that higher withdrawal rate leads to larger concavation of mushy zone, but the effect of chill is stronger than that of withdrawal rate if the contact area between casting and chill plate is large enough. Better grain structure in a blade is achieved by starter block 3 than by starter blocks 1 and 2. By starter block 4, the amount of column grains is larger and the amount of lateral grain boundaries is smaller, compared with that of starter blocks 1, 2 and 3. Therefore higher withdrawal rate could be adoptable without excessive concavation of mushy zone, resulting in parallel column grains, finer dendrites in the blade, and much higher blade productivity. Optimum withdrawal rates are also determined for starter blocks 3 and 4.

Key wordsaero turbine    wide-chord blade    directorial solidification    numerical simulation    columnar grain
    
ZTFLH:  TG292  
基金资助:* 国家重点基础研究发展计划项目2011CB706801, 国家自然科学基金项目51171089和51374137以及国家科技重大专项项目2012ZX04012-011资助
作者简介: null

唐宁, 男, 1983年生, 博士生

图1  宽弦导向叶片的三维结构
图2  Bridgman法示意图
图3  拉速对凝固前沿轮廓的影响
图4  凝固前沿下凹度的计算方法示意图
图5  晶粒数的计算方法示意图
图6  4种不同的引晶方式
图7  不同引晶方式下叶身糊状区宽度Kd沿高度的变化
图8  不同引晶方式下叶身糊状区下凹度Kcon沿高度的变化
图9  引晶方式1下拉速7 mm/min时得到的叶盆和叶背晶粒组织的模拟结果和实验结果
图10  引晶方式2下拉速7 mm/min时得到的叶盆和叶背晶粒组织的模拟结果和实验结果
图11  引晶方式3下拉速7 mm/min时得到的叶盆和叶背晶粒组织的模拟结果和实验结果
图12  引晶方式4下拉速7 mm/min时得到的叶盆和叶背晶粒组织的模拟结果
图13  不同引晶方式下叶身横截面晶粒数KNO沿高度的变化
图14  不同引晶方式下叶身横截线晶粒数KSNO沿高度的变化
图15  引晶3和引晶4不同拉速下叶身Kd沿高度的变化
图16  引晶3和引晶4不同拉速下叶身Kcon沿高度的变化
图17  引晶方式3下拉速5 mm/min时得到的叶盆和叶背晶粒组织的模拟结果和实验结果
图18  引晶方式3下拉速3 mm/min时得到的叶盆和叶背晶粒组织的模拟结果
图19  引晶3 和引晶4 不同拉速下叶身KNO沿高度的变化
图20  引晶3和引晶4不同拉速下叶身KNO沿高度的变化
图21  引晶方式4下拉速5 mm/min时得到的叶盆和叶背晶粒组织的模拟结果
[1] Wang Y L, Huang Z H, Zhao X H, Li J R. Adv Mater Res, 2011; 150-151: 975
[2] Zhong X J, Lei Z W. Aviat Maint Eng, 1995; (7): 11
[2] (钟行佳, 雷振威. 航空维修与工程, 1995; (7): 11)
[3] Pan D, Xu Q Y, Liu B C. Chin J Nonferrous Met, 2010; 20: 329
[3] (潘 冬, 许庆彦, 柳百成. 中国有色金属学报, 2010; 20: 329)
[4] Kablov E N. Acta Metall Sin (Engl Lett), 1996; 9: 433
[5] Rzyankina E, Szeliga D, Mahomed N, Nowotnik A. Appl Mech Mater, 2013; 372: 54
[6] Liu G, Liu L, Zhao X B, Zhang W G, Jin T, Zhang J, Fu H Z. Acta Metall Sin, 2010; 46: 77
[6] (刘 刚, 刘 林, 赵新宝, 张卫国, 金 涛, 张 军, 傅恒志. 金属学报, 2010; 46: 77)
[7] Cui K, Xu Q Y, Yu J, Liu B C, Kimatsuka A, Kuroki Y, Yokoyama F. Acta Metall Sin, 2007; 43: 465
[7] (崔 锴, 许庆彦, 于 靖, 柳百成, 木间塚明彦, 黑木康德, 横山文彦. 金属学报, 2007; 43: 465)
[8] Pan D, Xu Q Y, Yu J, Liu B C, Li J R, Yuan H L, Jin H P. Int J Cast Met Res, 2008; 21: 308
[9] Pan D, Xu Q Y, Liu B C. Sci China, 2011; 54: 851
[10] Pan D, Xu Q Y, Liu B C, Li J R, Yuan H L, Jin H P. JOM, 2010; 62(5): 30
[11] Yang X L, Ness D, Lee P D, D'Souza N. Mater Sci Eng, 2005; A413-414: 571
[12] de Bussac A, Gandin C A. Mater Sci Eng, 1997; A237: 35
[13] Li J J, Wang Z J, Wang Y Q, Wang J C. Acta Mater, 2012; 60: 1478
[14] Yu J, Xu Q, Liu B, Li J, Yuan H. Adv Mater Proc, 2007; 26-28: 947
[15] Xue X, Xu L. Mater Sci Eng, 2009; A499: 69
[16] Yang X L, Lee P D, D'Souza N. JOM, 2005; 57(5): 40
[17] Wang W, Kermanpur A, Lee P D, Mclean M. J Mater Sci, 2003; 38: 4385
[18] Gandin C A, Desbiolles J L, Rappaz M, Thevoz P. Metall Mater Trans, 1999; 30A: 3153
[19] Rappaz M, Gandin C A, Desbiolles J L, Thevoz P. Metall Mater Trans, 1996; 27A: 695
[20] Rappaz M, Gandin C A. Acta Metall Mater, 1992; 41: 345
[21] Dai H J, Gebelin J C, D'Souza N, Brown P D, Dong H B. Int J Cast Met Res, 2009; 22: 54
[22] Yang X L, Dong H B, Wang W, Lee P D. Mater Sci Eng, 2004; A386: 129
[23] Kermanpur A, Varahram N, Davami P, Rappaz M. Metall Mater Trans, 2000; 31B: 1293
[24] Shang W, Sun C B, Liu Y, Li B, Zhou J H, Du H Q, Xu Q Y. Foundry, 2013; 62: 415
[24] (尚 伟, 孙长波, 刘 艳, 李 波, 周君华, 杜洪强, 许庆彦. 铸造, 2013; 62: 415)
[25] Meng X B, Li J G, Chen Z Q, Wang Y H, Zhu S Z, Bai X F, Wang F, Zhang J, Jin T, Sun X F, Hu Z Q. Metall Mater Trans, 2013; 44A: 1955
[26] Elliott A J, Tin S, King W T, Huang S C, Gigliotti M F X, Pollock T M. Metall Mater Trans, 2004; 35A: 3221
[27] Wang Y L, Zhao X H, Fan Y W, Huang Z H, Wang Q. J Aeronaut Mater, 2012; 32(6): 50
[27] (王艳丽, 赵希宏, 范映伟, 黄朝晖, 王 祺. 航空材料学报, 2012; 32(6): 50)
[28] Tang N, Sun C B, Zhang H, Xu Q Y, Liu B C. Rare Met Mater Eng, 2013; 42: 2298
[28] (唐 宁, 孙长波, 张 航, 许庆彦, 柳百成. 稀有金属材料与工程, 2013; 42: 2298)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[7] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[8] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[9] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[10] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[11] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[12] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[13] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[14] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[15] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.