Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 445-454    DOI: 10.11900/0412.1961.2015.00389
  论文 本期目录 | 过刊浏览 |
拓扑密堆μ相对含Hf的镍基粉末高温合金组织和性能的影响*
张义文1,2(),胡本芙3
1 钢铁研究总院高温材料研究所, 北京 100081
2 钢铁研究总院高温合金新材料北京市重点实验室, 北京 100081
3 北京科技大学材料科学与工程学院, 北京 100083
EFFECTS OF TOPOLOGICALLY CLOSE PACKED μ PHASE ON MICROSTRUCTURE AND PROPERTIES IN POWDER METALLURGY Ni-BASED SUPERALLOY WITH Hf
Yiwen ZHANG1,2(),Benfu HU3
1 High Temperature Material Institute, Central Iron and Steel Research Institute, Beijing 100081, China
2 Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(1349 KB)   HTML
摘要: 

研究了含Hf (0~0.89%)的FGH4097粉末高温合金中拓扑密堆μ相的析出动力学、组织形态以及μ相对Hf含量为0.30%的合金盘坯力学性能的影响. 结果表明, Hf含量为0.30%和0.89%的合金, 经750~900 ℃长期时效后μ相已明显析出. 随着时效温度的升高、时效时间的延长以及Hf添加量的增加, μ相析出量增加且尺寸长大. μ相主要在晶内以长条片状形态析出. Hf含量为0.30%的FGH4097合金盘坯在550~650 ℃长期时效后未出现μ相, 高温拉伸性能和高温持久性能没有降低, 组织稳定性良好. 750 ℃长期时效后, 盘坯中析出了μ相, 析出的μ相对高温拉伸强度无明显影响, 有助于提高高温拉伸塑性, 降低了高温持久寿命, 高温持久塑性提高约30%. 详细讨论了μ相的析出行为、γ固溶体中合金元素的再分配以及合金断口特征. 解释了μ相对力学性能影响的脆-韧双重作用机理, 并提出控制和避免μ相大量析出造成性能劣化的措施和方法.

关键词 粉末高温合金FGH4097Hfμ力学性能    
Abstract

It is widely acknowledged that topologically close packed (TCP) phases are detrimental to comprehensive properties of superalloys, as TCP phases deplete strengthening elements from matrix and easily become crack initiations. In this work, the precipitation kinetics and morphology of topologically close packed μ phase in FGH4097 powder metallurgy (PM) superalloy with (0~0.89%)Hf and the effect of μ phase on the mechanical properties of FGH4097 PM superalloy billet with 0.30%Hf has been investigated. The results showed that μ phase precipitated obviously in the alloys with 0.30%Hf and 0.89%Hf after long-term ageing at 750~900 ℃, the amount and size of μ phase increased as the ageing temperature, ageing time and Hf content increasing. μ phase mainly precipitated in grains with strip and flake shapes. After long-term ageing at 550~650 ℃, no μ phase precipitated in FGH4097 PM superalloy billet with 0.30%Hf and the tensile properties and stress-rupture properties at high temperature were not decreased, which showed excellent microstructure stability. After long term ageing at 750 ℃, precipitated μ phase had little effect on tensile strength at high temperature, however, the tensile ductility increased and high temperature stress rupture life reduced, and the stress rupture ductility increased by about 20%. In this work, the precipitation behavior of μ phase, the redistribution of elements in γ solid solution and the FGH4097 PM superalloy fracture morphology characteristics have been discussed in detail. The mechanism of the brittle and ductile dual effect of μ phase on the mechanical properties has been explained. The methods of controlling and avoiding excessive μ phase precipitation which leaded to performance deterioration have been proposed.

Key wordspowder metallurgy superalloy    FGH4097    Hf    μ    phase    mechanical property
收稿日期: 2015-07-16     
基金资助:*国家国际科技合作专项资助项目2014DFR50330

引用本文:

张义文,胡本芙. 拓扑密堆μ相对含Hf的镍基粉末高温合金组织和性能的影响*[J]. 金属学报, 2016, 52(4): 445-454.
Yiwen ZHANG, Benfu HU. EFFECTS OF TOPOLOGICALLY CLOSE PACKED μ PHASE ON MICROSTRUCTURE AND PROPERTIES IN POWDER METALLURGY Ni-BASED SUPERALLOY WITH Hf. Acta Metall Sin, 2016, 52(4): 445-454.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00389      或      https://www.ams.org.cn/CN/Y2016/V52/I4/445

图1  不同Hf含量的FGH4097合金标准热处理态显微组织
图2  Hf含量为0.89%的FGH4097合金在不同温度下时效1000 h后的SEM像
图3  Hf含量为0.89%的FGH4097合金在900 ℃时效1000 h后μ相的TEM像和[011?0]晶带轴的SAED谱以及 EDS分析结果
Element Mass fraction / % Atomic fraction / %
Al 0.26 0.78
Ti 0.33 0.56
Cr 10.65 16.55
Co 16.88 23.13
Ni 20.57 28.30
Nb 1.55 1.35
Mo 18.58 15.64
W 31.18 13.70
表1  μ相化学成分的EDS分析结果
图4  Hf含量为0.89%的FGH4097合金在850 ℃时效1000 h后M6C相的TEM像和[2?33]晶带轴的SAED谱以及EDS分析结果
Element Mass fraction / % Atomic fraction / %
C 26.13 71.51
Cr 17.11 10.81
Co 1.67 0.93
Ni 2.96 1.65
Nb 1.99 0.70
Mo 33.14 11.35
W 17.00 3.04
表2  M6C相化学成分的EDS分析结果
图5  Hf含量为0.89%的FGH4097合金在850 ℃时效1000 h析出的M23C6型碳化物的TEM像和[011]晶带轴的SAED谱以及EDS分析结果
Element Mass fraction / % Atomic fraction / %
C 1.82 8.21
Cr 73.99 76.93
Co 3.20 2.93
Ni 5.19 4.77
Mo 9.33 5.26
W 6.47 1.90
表3  M23C6相化学成分的EDS分析结果
图6  900 ℃时效不同时间前后不同Hf含量的FGH4097合金的SEM像
Status γ′ MC M3B2+M6C+μ M23C6
Heat treated 62.78 0.296 0.133 (no μ phase) -
Aged at 650 ℃ for 5000 h 64.04 0.281 0.186 -
Aged at 700 ℃ for 5000 h 64.12 0.254 0.206 0.045
Aged at 750 ℃ for 5000 h 64.21 0.214 1.234 0.158
表4  长期时效前后FGH4097合金盘坯的相组成
图7  750 ℃时效不同时间后FGH4097合金盘坯的SEM像
图8  FGH4097合金盘坯650 ℃时效5000 h后650 ℃持久试样断口全貌及源区形貌
Ageing temperature / ℃ Ageing time / h σb / MPa σ0.2 / MPa δ / % Ψ / % τ / h
550 2000 1190 975 17.5 19.5 264
5000 1190 980 22.0 21.0 281
650 2000 1190 980 23.0 24.0 285
5000 1240 1040 15.0 14.5 260
700 2000 1150 930 31.5 31.5 245
5000 1180 960 22.5 23.5 269
750 2000 1140 975 23.0 24.5 248
5000 1160 985 11.0 15.0 253
Heat treated - 1220 1020 12.5 15.5 243
表5  FGH4097合金盘坯长期时效前后750 ℃的拉伸性能和650 ℃的持久寿命
图9  FGH4097合金盘坯750 ℃时效5000 h后在750 ℃和637 MPa条件下持久试样断口全貌及源区形貌
Ageing temperature / ℃ τ / h δ / %
550 757 9.0
650 962 8.0
700 263 12.0
750 430 12.0
Heat treated 754 9.0
表6  FGH4097合金盘坯长期时效前后750 ℃的持久性能(光滑试样)
[1] Kotval P S, Venables J D, Calder R W.Metall Trans, 1972; 3: 457
[2] Radavich J, Furrer D, Carneiro T, Lemsky J.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale, PA: TMS, 2008: 63
[3] Amouyal Y, Seidman D N.Acta Mater, 2011; 59: 3321
[4] Zhao S Q, Dong J X, Xie X S, Smith G D, Patel S J.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: TMS, 2004: 63
[5] Warren R, Ingesten N G, Winberg L, R?nnhult T.Powder Metall, 1984; 27(3): 141
[6] Williams J C, Starke E A.Acta Mater, 2003; 51: 5773
[7] Ezaki H, Morinaga M, Yukawa N.Philos Mag, 1986; 53A: 709
[8] Yukawa N, Morinaga M, Ezaki H, Murata Y.In: Betz W, Brunetaud R, Coutsouradis D, Fischmeister H, Gibbons T B, Kvernes I, Lindblom Y, Marriott J B, Meadowcroft D B eds., High Temperature Alloys for Gas Turbines and Other Applications 1986, Dordrecht: D. Riedel Publishing Company, 1986: 935
[9] Morinaga M, Yukawa N, Adachi H, Ezaki H.In: Gell M, Kortovic C S, Bricknell R H, Kent W B, Radavich J F eds., Superalloys 1984, Warrendale, PA: TMS, 1984: 523
[10] Guo J T, Hou J H, Zhou L H.Metall Trans, 2006; 47: 198
[11] Qiu Y M, Zhu Y X.Acta Metall Sin, 1989; 25: 78
[11] (邱一鸣, 朱耀霄. 金属学报, 1989; 25: 78)
[12] Zhang Y W, Wang F M, Hu B F.Acta Metall Sin, 2012; 48: 187
[12] (张义文, 王福明, 胡本芙. 金属学报, 2012; 48: 187)
[13] Zhang Y W, Wang F M, Hu B F.Acta Metall Sin, 2012; 48: 1011
[13] (张义文, 王福明, 胡本芙. 金属学报, 2012; 48: 1011)
[14] Simas C T, Stoloff N S, Hagel W C. Superalloy II. New York: Joha Wiley & Sons, 1987: 143
[15] Beattie H J, Hagel W C.Trans Metall Soc AIME, 1961; 221(1): 28
[16] Miner R V.Metall Trans, 1977; 8A: 259
[17] Chen G L.Superalloy. Beijing: Metallurgical Industry Press, 1988: 70
[17] (陈国良. 高温合金. 北京:冶金工业出版社, 1988: 70)
[18] Stroh A N.Proc Royal Soc, 1954; 223A: 404
[19] Stroh A N.Proc Royal Soc London, 1955; 232A: 548
[20] Yoshinori M, Kiyoshi S, Natsuo Y.J Mater Sci, 1986; 21: 3653
[21] Boesch W J, Canada H B.J Met, 1968; 20: 46
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 高翔, 张桂凯, 向鑫, 罗丽珠, 汪小琳. 合金元素对V(110)表面O吸附影响的第一性原理研究[J]. 金属学报, 2020, 56(6): 919-928.
[4] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[5] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[6] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[7] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[8] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[9] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[10] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[11] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[12] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[13] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[14] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[15] 王桂芹,王琴,车宏龙,李亚军,雷明凯. Si对铸造超高铬高碳双相钢组织及性能的影响[J]. 金属学报, 2020, 56(3): 278-290.