Please wait a minute...
金属学报  2021, Vol. 57 Issue (6): 797-810    DOI: 10.11900/0412.1961.2020.00298
  研究论文 本期目录 | 过刊浏览 |
基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化
赵婉辰1, 郑晨1, 肖斌1, 刘行2, 刘璐1, 余童昕1, 刘艳洁1, 董自强1, 刘轶1(), 周策3, 吴洪盛3, 路宝坤3
1.上海大学 材料基因组工程研究院 上海 200444
2.上海大学 钱伟长学院 上海 200444
3.福建省南平铝业股份有限公司 南平 353099
Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling
ZHAO Wanchen1, ZHENG Chen1, XIAO Bin1, LIU Xing2, LIU Lu1, YU Tongxin1, LIU Yanjie1, DONG Ziqiang1, LIU Yi1(), ZHOU Ce3, WU Hongsheng3, LU Baokun3
1.Materials Genome Institute, Shanghai University, Shanghai 200444, China
2.Qianweichang College, Shanghai University, Shanghai 200444, China
3.Nanping Aluminum Corporation, Nanping 353099, China
引用本文:

赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
Wanchen ZHAO, Chen ZHENG, Bin XIAO, Xing LIU, Lu LIU, Tongxin YU, Yanjie LIU, Ziqiang DONG, Yi LIU, Ce ZHOU, Hongsheng WU, Baokun LU. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. Acta Metall Sin, 2021, 57(6): 797-810.

全文: PDF(6616 KB)   HTML
摘要: 

结合高通量材料制备实验与基于Bayesian优化采样策略的主动学习方法,开发了有效的机器学习模型来描述合金元素组成与硬度之间的关系,并分析关键微量元素含量对硬度的影响。研究发现,经过3轮迭代64个铝合金样品建模后,Bayesian取样策略方法的预测硬度误差为4.49 HV (7.23%),远低于应用人工经验采样法的机器学习模型误差9.73 HV (15.68%),且当铝合金中的Mg和Si比值Mg/Si在1.37~1.72时,具有较高的合金硬度。通过在6061铝合金标准名义成分范围内进行成分精细优化以及性能调控,为工业上提高产品质量提供了可实现的策略.

关键词 机器学习Bayesian优化高通量实验6061铝合金成分精细优化    
Abstract

Within the China standard (6061 GB/T 3190-2008) of the aluminum alloy 6061, there are a wide range of alloy compositions having multiple trace elements. From the viewpoint of scientific research and quality control in industries, it is important to understand the relationship between the different potential compositions and corresponding mechanical properties of the aluminum alloy 6061. In this work, high-throughput experiments on materials synthesis and an active-learning framework based on the Bayesian optimization sampling process were combined to develop effective machine learning (ML) models to describe the relationship between the composition and hardness of aluminum 6061 alloys. In this work, > 100 alloys with ML designed compositions were synthesized and their hardness data were obtained through high-throughput experiments. The composite ML features were introduced by combining elementary material properties and chemical compositions of alloys and were selected subsequently according to their importance and correlation among features. The efficiencies of two sampling strategies were compared in guiding the iterative experiments: manual sampling based on empirical experience and Bayesian optimization sampling trained within the active-learning framework using the efficient global optimization and knowledge gradient algorithms. These ML models were updated iteratively until the prediction accuracy approached the experimental error. Specifically, the error in the hardness values predicted by the Bayesian model using 64 aluminum alloy samples after three rounds of iterations was 4.49 HV (7.23%), which is much lower than the error predicted by the empirical sampling method (9.73 HV; 15.68%). The results show that Bayesian optimization sampling accelerates the optimization of alloys property more efficiently than manual empirical sampling. Finally, the machine learning models using Bayesian sampling were interpreted using the Shapley additive explanations method and analysis of the partial dependence plot discuss the effects of various trace alloying elements and composite ML features on the hardness of the aluminum alloys. It was found that the hardness value of the aluminum alloys became large when the ratio between Mg and Si (Mg/Si) was between 1.37 and 1.72. In addition, the machine learning models suggested that the lattice distortion, cohesive energy, configurational entropy, and shear modulus were positively proportional to the hardness of the alloy. This work demonstrated that active-learning-guided high-throughput experiments on composition refinement can not only improve the performance and quality control of aluminum 6061 alloys within its standard nominal composition range as used in industry but also provide a feasible approach for the design and property optimization of other multialloy materials.

Key wordsmachine learning    Bayesian optimization    high-throughput experiment    6061 aluminum alloy    composition refinement
收稿日期: 2020-08-13     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2017YFB0702901)
作者简介: 赵婉辰,女,1996年生,硕士生
图1  主动学习合金设计框架
图2  Bootstrap 随机抽样建模法
Feature indexFeature nameFeature indexFeature name
F_0Ave: electron_affinityF_1Ave: hhi_r
F_2Var: covalent_radiusF_3Sum: atomic_weight
F_4Var: gs_est_fcc_latcntF_5Var: atomic_radius
F_6Modulus mismatchF_7Var: atomic_radius_rahm
F_8Shear modulusF_9Lattice distortion energy
F_10Mixing enthalpyF_11Parameter omiga
F_12Ave: dipole_polarizabilityF_13Sum: c6_gb
F_14Cohesive energyF_15Var: molar_volume
F_16Var: first_ion_enF_17Ave: covalent_radius_pykko_triple
F_18Ave: boiling_pointF_19Sum: heat_of_formation
F_20Configurational entropyF_21Ave: electron_negativity
表1  22个重要性质特征描述符的索引及对应含义
图3  Pearson相关性特征筛选结果
图4  序列前向选择(SFS)与序列后向选择(SBS)特征选择方法与结果对比(a) subset building results of SFS (RMSE—root mean square error, svr.rbf—radial basis function support vector regression)(b) subset filtering results of SBS(c) comparisons of modeling results between the two feature subsets (bpnn—back propagation neural network, svr.poly—polynomial kernel functions for support vector regression, gbr—gradient boosted regression, rfr—random forest regression)
图5  机器学习模型预测结果对比(a) RMSE results with the training data divided randomly at the ratio of 30%~90%(b) evaluation results of Bootstrap random sampling model (histogram) and model performance with 80% training data split ratio (point and line plot)
RoundEVSMAE / HVMSE / HVRMSE / HVMedAE / HV
First round-0.1014.60301.8017.310.09
The second round of mME-0.1110.06138.1011.750.04
The second round of mBO0.315.5738.566.210.01
The third round of mME0.167.7994.599.730.03
The third round of mBO0.502.8820.134.49< 0.01
The third round of mBOe-0.064.8542.416.510.01
表2  回归模型评估结果
图6  以人工经验采样数据填充的机器学习模型(mME)和以Bayesian优化采样数据填充的机器学习模型(mBO)建模结果对比
图7  mBO与包含实验误差特征的mBO机器学习模型(mBOe)建模预测结果对比
图8  基于Shapley解释法(SHAP)的特征重要性分析及Mg和Si相互作用关系依赖图(a) feature importance sorting(b) basic dependence plot of Mg(c) basic dependence plot of Si
图9  微量元素特征与硬度之间的绝对变化规律及贡献性分析(a) Si (b) Cu (c) Mn (d) Mg (e) Ti (f) Fe (g) Zn (h) Cr
1 Bron F, Besson J. A yield function for anisotropic materials application to aluminum alloys [J]. Int. J. Plast., 2004, 20: 937
2 Hou L G, Liu M L, Wang X D, et al. Cryogenic processing high-strength 7050 aluminum alloy and controlling of the microstructures and mechanical properties [J]. Acta. Metall. Sin., 2017, 53: 1075
2 侯陇刚, 刘明荔, 王新东等. 高强7050铝合金超低温大变形加工与组织、性能调控 [J]. 金属学报, 2017, 53: 1075
3 Liu H L, Ding X Y, Xu L H. Effects of Mg2Si content on microstructure and mechanical properties of aluminum alloy 6061 [J]. Southern Met., 2019, (4): 1
3 刘辉丽, 丁幸宇, 徐龙辉. Mg2Si含量对6061铝合金组织和力学性能的影响 [J]. 南方金属, 2019, (4): 1
4 Zhong H, Rometsch P A, Cao L F, et al. The influence of Mg/Si ratio and Cu content on the stretch formability of 6xxx aluminium alloys [J]. Mater. Sci. Eng., 2016, A651: 688
5 Ye Y L, Yang Z, Xu X X, et al. Effects of excess Mg and Si on the properties of 6101 conducting wire and its mechanism [J]. Rare Met. Mater. Eng., 2016, 45: 968
5 叶於龙, 杨 昭, 徐雪璇等. 过量Mg、Si元素对6101 电工导线性能影响及机制 [J]. 稀有金属材料与工程, 2016, 45: 968
6 Wen Z, Wen J Y, Wang B, et al. The effects of Mn addition on microstructure and hardness in 6061 aluminium alloy [J]. Pop. Sci. Technol., 2013, 15(11): 25
6 文 忠, 文建塬, 王 彬等. Mn对6061合金组织和硬度的影响 [J]. 大众科技, 2013, 15(11): 25
7 Zhang X M, Ke B, Tang J G, et al. Effects of Mn content on microstructure and mechanical properties of 6061 aluminum alloy [J]. Chin. J. Mater. Res., 2013, 27: 338
7 张新明, 柯 彬, 唐建国等. Mn含量对6061铝合金组织与力学性能的影响 [J]. 材料研究学报, 2013, 27: 338
8 Wang Z X, Li H, Gu J H, et al. Effect of Cu content on microstructures and properties of Al-Mg-Si-Cu alloys [J]. Chin. J. Nonferrours Met., 2012, 22: 3348
8 王芝秀, 李 海, 顾建华等. Cu含量对Al-Mg-Si-Cu合金微观组织和性能的影响 [J]. 中国有色金属学报, 2012, 22: 3348
9 Yu H B, Du Y L. Effect of alloying and heat treatment on microstructure and properties of 6061 aluminum alloy for automobile [J]. Foundry Technol., 2017, 38: 2374
9 于洪兵, 杜艳丽. 合金化及热处理对汽车用6061铝合金组织与性能的影响 [J]. 铸造技术, 2017, 38: 2374
10 Wang X G, Li Q S, Ning X D, et al. Composition optimization design and properties simulation of Al-Zn-Mg aluminum alloy [J]. Foundry Technol., 2018, 39: 2477
10 王孝国, 李秋书, 宁小丹等. Al-Zn-Mg铝合金成分优化设计及性能仿真 [J]. 铸造技术, 2018, 39: 2477
11 Li X M, Yu J J. Using orthogonal experimental design to optimize alloy composition [J]. IOP Conf. Ser. Mater. Sci. Eng., 2012, 33: 012065
12 Xiao B, Wu Y Q, Liu Y. Machine learning on doping of nickel-base single crystal superalloy based on first-principles calculation [J]. Shanghai Met., 2020, 42(3): 97
12 肖 斌, 吴雨沁, 刘 轶. 基于第一性原理计算的镍基单晶高温合金掺杂的机器学习研究 [J]. 上海金属, 2020, 42(3): 97
13 Hao Y Z, Zhao H D, Lin J H. Properties of squeeze-cast aluminum alloys based on machine learning [J]. Spec. Cast. Nonfer. Alloys, 2019, 39: 859
13 郝永志, 赵海东, 林嘉华. 基于机器学习的挤压铸造铝合金力学性能预测 [J]. 特种铸造及有色合金, 2019, 39: 859
14 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta. Metall. Sin., 2020, 56: 1313
14 宿彦京, 付华栋, 白 洋等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
15 Dehghannasiri R, Yoon B J, Dougherty E R. Optimal experimental design for gene regulatory networks in the presence of uncertainty [J]. IEEE/ACM Trans. Comput. Biol. Bioinform., 2015, 12: 938
16 Ward L, Agrawal A, Choudhary A, et al. A general-purpose machine learning framework for predicting properties of inorganic materials [J]. npj Comp. Mater., 2016, 2: 16028
17 Wang J, Xiao B, Liu Y. Machine learning assisted high-throughput experiments accelerates the composition design of hard high-entropy alloy CoxCryTizMouWv [J]. Mater. China, 2020, 39: 269
17 王 炯, 肖 斌, 刘 轶. 机器学习辅助的高通量实验加速硬质高熵合金CoxCryTizMouWv成分设计 [J]. 中国材料进展, 2020, 39: 269
18 Balachandran P V, Young J, Lookman T, et al. Learning from data to design functional materials without inversion symmetry [J]. Nat. Commun., 2017, 8: 14282
19 Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel Co-based superalloys: A review [J]. Acta Metall. Sin., 2020, 56: 1
19 刘兴军, 陈悦超, 卢 勇等. 新型钴基高温合金多尺度设计的研究现状与展望 [J]. 金属学报, 2020, 56: 1
20 Balachandran P V, Kowalski B, Sehirlioglu A, et al. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning [J]. Nat. Commun., 2018, 9: 1668
21 Balachandran P V. Machine learning guided design of functional materials with targeted properties [J]. Comp. Mater. Sci., 2019, 164: 82
22 Gubernatis J E, Lookman T. Machine learning in materials design and discovery: Examples from the present and suggestions for the future [J]. Phys. Rev. Mater., 2018, 2: 120301
23 Xiong J, Shi S Q, Zhang T Y. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys [J]. Mater. Des., 2020, 187: 108378
24 Xu W, Huang M H, Wang J L, et al. Review: Relations between metastable austenite and fatigue behavior of steels [J]. Acta. Metall. Sin., 2020, 56: 459
24 徐 伟, 黄明浩, 王金亮等. 综述: 钢中亚稳奥氏体组织与疲劳性能关系 [J]. 金属学报, 2020, 56: 459
25 Bhadeshia H K D H, Dimitriu R C, Forsik S, et al. Performance of neural networks in materials science [J]. Mater. Sci. Technol., 2013, 25: 504
26 Schütt K T, Sauceda H E, Kindermans P J, et al. SchNet—A deep learning architecture for molecules and materials [J]. J. Chem. Phys., 2018, 148: 241722
27 Rodgers J R, Cebon D. Materials informatics [J]. MRS Bull., 2011, 31: 975
28 Liu Z L, Li W, Liu H, et al. Research progress of high-throughput computational screening of metal-organic frameworks [J]. Acta. Chim. Sin., 2019, 77: 323
28 刘治鲁, 李 炜, 刘 昊等. 金属有机骨架的高通量计算筛选研究进展 [J]. 化学学报, 2019, 77: 323
29 Lookman T, Alexander F J, Rajan K. Information Science for Materials Discovery and Design [M]. Cham: Springer, 2016: 1
30 Lookman T, Balachandran P V, Xue D Z, et al. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design [J]. Npj Comp. Mater., 2019, 5: 21
31 Yuan R H, Liu Z, Balachandran P V, et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning [J]. Adv. Mater., 2018, 30: 1702884
32 Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions [J]. J. Global. Optim., 1998, 13: 455
33 Tian Y, Yuan R H, Xue D Z, et al. Role of uncertainty estimation in accelerating materials development via active learning [J]. J. Appl. Phys., 2020, 128: 014103
34 Xue D Z, Balachandran P V, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design [J]. Nat. Commun., 2016, 7: 11241
35 Xue D Z, Xue D Q, Yuan R H, et al. An informatics approach to transformation temperatures of NiTi-based shape memory alloys [J]. Acta Mater., 2017, 125: 532
36 Umemoto M, Liu Z G, Tsuchiya K, et al. Relationship between hardness and tensile properties in various single structured steels [J]. Mater. Sci. Technol., 2013, 17: 505
37 Wu S, Lambard G, Liu C, et al. iQSPR in XenonPy: A bayesian molecular design algorithm [J]. Mol. Inf., 2020, 39: 1900107
38 Aldrich C. Process variable importance analysis by use of random forests in a shapley regression framework [J]. Minerals, 2020, 10: 420
39 Zhang S J. Study on high-silicon die casting aluminum alloys with high strength [D]. Ji'nan: Shandong University, 2008
39 张士佼. 高强压铸高硅铝合金的研究 [D]. 济南: 山东大学, 2008
40 Su X P. Engineering Materials [M]. Xiangtan: Xiangtan University Press, 2008: 1
40 苏旭平. 工程材料 [M]. 湘潭: 湘潭大学出版社, 2008: 1
41 Gao A H, Wang F R. Effect of Mg/Si mass ratio on microstructure and properties of 6063 alloy [J]. Mater. Heat Treat., 2012, 41(16): 23
41 高爱华, 王福荣. 镁硅质量比对6063铝合金组织和性能的影响 [J]. 材料热处理技术, 2012, 41(16): 23
[1] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] 冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.
[3] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[4] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[5] 何兴群, 付华栋, 张洪涛, 方继恒, 谢明, 谢建新. 机器学习辅助高性能银合金电接触材料的快速发现[J]. 金属学报, 2022, 58(6): 816-826.
[6] 谢建新, 宿彦京, 薛德祯, 姜雪, 付华栋, 黄海友. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361.
[7] 宿彦京, 付华栋, 白洋, 姜雪, 谢建新. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56(10): 1313-1323.
[8] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[9] 王东 刘杰 肖伯律 马宗义. 铝合金/镁合金搅拌摩擦焊接界面处Mg/Al反应及接头力学性能[J]. 金属学报, 2010, 46(5): 589-594.
[10] 李 海 潘道召 王芝秀 郑子樵. T6I6时效对6061铝合金拉伸及晶间腐蚀性能的影响[J]. 金属学报, 2010, 46(4): 494-499.