|
|
基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化 |
赵婉辰1, 郑晨1, 肖斌1, 刘行2, 刘璐1, 余童昕1, 刘艳洁1, 董自强1, 刘轶1( ), 周策3, 吴洪盛3, 路宝坤3 |
1.上海大学 材料基因组工程研究院 上海 200444 2.上海大学 钱伟长学院 上海 200444 3.福建省南平铝业股份有限公司 南平 353099 |
|
Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling |
ZHAO Wanchen1, ZHENG Chen1, XIAO Bin1, LIU Xing2, LIU Lu1, YU Tongxin1, LIU Yanjie1, DONG Ziqiang1, LIU Yi1( ), ZHOU Ce3, WU Hongsheng3, LU Baokun3 |
1.Materials Genome Institute, Shanghai University, Shanghai 200444, China 2.Qianweichang College, Shanghai University, Shanghai 200444, China 3.Nanping Aluminum Corporation, Nanping 353099, China |
引用本文:
赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
Wanchen ZHAO,
Chen ZHENG,
Bin XIAO,
Xing LIU,
Lu LIU,
Tongxin YU,
Yanjie LIU,
Ziqiang DONG,
Yi LIU,
Ce ZHOU,
Hongsheng WU,
Baokun LU.
Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. Acta Metall Sin, 2021, 57(6): 797-810.
1 |
Bron F, Besson J. A yield function for anisotropic materials application to aluminum alloys [J]. Int. J. Plast., 2004, 20: 937
|
2 |
Hou L G, Liu M L, Wang X D, et al. Cryogenic processing high-strength 7050 aluminum alloy and controlling of the microstructures and mechanical properties [J]. Acta. Metall. Sin., 2017, 53: 1075
|
2 |
侯陇刚, 刘明荔, 王新东等. 高强7050铝合金超低温大变形加工与组织、性能调控 [J]. 金属学报, 2017, 53: 1075
|
3 |
Liu H L, Ding X Y, Xu L H. Effects of Mg2Si content on microstructure and mechanical properties of aluminum alloy 6061 [J]. Southern Met., 2019, (4): 1
|
3 |
刘辉丽, 丁幸宇, 徐龙辉. Mg2Si含量对6061铝合金组织和力学性能的影响 [J]. 南方金属, 2019, (4): 1
|
4 |
Zhong H, Rometsch P A, Cao L F, et al. The influence of Mg/Si ratio and Cu content on the stretch formability of 6xxx aluminium alloys [J]. Mater. Sci. Eng., 2016, A651: 688
|
5 |
Ye Y L, Yang Z, Xu X X, et al. Effects of excess Mg and Si on the properties of 6101 conducting wire and its mechanism [J]. Rare Met. Mater. Eng., 2016, 45: 968
|
5 |
叶於龙, 杨 昭, 徐雪璇等. 过量Mg、Si元素对6101 电工导线性能影响及机制 [J]. 稀有金属材料与工程, 2016, 45: 968
|
6 |
Wen Z, Wen J Y, Wang B, et al. The effects of Mn addition on microstructure and hardness in 6061 aluminium alloy [J]. Pop. Sci. Technol., 2013, 15(11): 25
|
6 |
文 忠, 文建塬, 王 彬等. Mn对6061合金组织和硬度的影响 [J]. 大众科技, 2013, 15(11): 25
|
7 |
Zhang X M, Ke B, Tang J G, et al. Effects of Mn content on microstructure and mechanical properties of 6061 aluminum alloy [J]. Chin. J. Mater. Res., 2013, 27: 338
|
7 |
张新明, 柯 彬, 唐建国等. Mn含量对6061铝合金组织与力学性能的影响 [J]. 材料研究学报, 2013, 27: 338
|
8 |
Wang Z X, Li H, Gu J H, et al. Effect of Cu content on microstructures and properties of Al-Mg-Si-Cu alloys [J]. Chin. J. Nonferrours Met., 2012, 22: 3348
|
8 |
王芝秀, 李 海, 顾建华等. Cu含量对Al-Mg-Si-Cu合金微观组织和性能的影响 [J]. 中国有色金属学报, 2012, 22: 3348
|
9 |
Yu H B, Du Y L. Effect of alloying and heat treatment on microstructure and properties of 6061 aluminum alloy for automobile [J]. Foundry Technol., 2017, 38: 2374
|
9 |
于洪兵, 杜艳丽. 合金化及热处理对汽车用6061铝合金组织与性能的影响 [J]. 铸造技术, 2017, 38: 2374
|
10 |
Wang X G, Li Q S, Ning X D, et al. Composition optimization design and properties simulation of Al-Zn-Mg aluminum alloy [J]. Foundry Technol., 2018, 39: 2477
|
10 |
王孝国, 李秋书, 宁小丹等. Al-Zn-Mg铝合金成分优化设计及性能仿真 [J]. 铸造技术, 2018, 39: 2477
|
11 |
Li X M, Yu J J. Using orthogonal experimental design to optimize alloy composition [J]. IOP Conf. Ser. Mater. Sci. Eng., 2012, 33: 012065
|
12 |
Xiao B, Wu Y Q, Liu Y. Machine learning on doping of nickel-base single crystal superalloy based on first-principles calculation [J]. Shanghai Met., 2020, 42(3): 97
|
12 |
肖 斌, 吴雨沁, 刘 轶. 基于第一性原理计算的镍基单晶高温合金掺杂的机器学习研究 [J]. 上海金属, 2020, 42(3): 97
|
13 |
Hao Y Z, Zhao H D, Lin J H. Properties of squeeze-cast aluminum alloys based on machine learning [J]. Spec. Cast. Nonfer. Alloys, 2019, 39: 859
|
13 |
郝永志, 赵海东, 林嘉华. 基于机器学习的挤压铸造铝合金力学性能预测 [J]. 特种铸造及有色合金, 2019, 39: 859
|
14 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta. Metall. Sin., 2020, 56: 1313
|
14 |
宿彦京, 付华栋, 白 洋等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
15 |
Dehghannasiri R, Yoon B J, Dougherty E R. Optimal experimental design for gene regulatory networks in the presence of uncertainty [J]. IEEE/ACM Trans. Comput. Biol. Bioinform., 2015, 12: 938
|
16 |
Ward L, Agrawal A, Choudhary A, et al. A general-purpose machine learning framework for predicting properties of inorganic materials [J]. npj Comp. Mater., 2016, 2: 16028
|
17 |
Wang J, Xiao B, Liu Y. Machine learning assisted high-throughput experiments accelerates the composition design of hard high-entropy alloy CoxCryTizMouWv [J]. Mater. China, 2020, 39: 269
|
17 |
王 炯, 肖 斌, 刘 轶. 机器学习辅助的高通量实验加速硬质高熵合金CoxCryTizMouWv成分设计 [J]. 中国材料进展, 2020, 39: 269
|
18 |
Balachandran P V, Young J, Lookman T, et al. Learning from data to design functional materials without inversion symmetry [J]. Nat. Commun., 2017, 8: 14282
|
19 |
Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel Co-based superalloys: A review [J]. Acta Metall. Sin., 2020, 56: 1
|
19 |
刘兴军, 陈悦超, 卢 勇等. 新型钴基高温合金多尺度设计的研究现状与展望 [J]. 金属学报, 2020, 56: 1
|
20 |
Balachandran P V, Kowalski B, Sehirlioglu A, et al. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning [J]. Nat. Commun., 2018, 9: 1668
|
21 |
Balachandran P V. Machine learning guided design of functional materials with targeted properties [J]. Comp. Mater. Sci., 2019, 164: 82
|
22 |
Gubernatis J E, Lookman T. Machine learning in materials design and discovery: Examples from the present and suggestions for the future [J]. Phys. Rev. Mater., 2018, 2: 120301
|
23 |
Xiong J, Shi S Q, Zhang T Y. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys [J]. Mater. Des., 2020, 187: 108378
|
24 |
Xu W, Huang M H, Wang J L, et al. Review: Relations between metastable austenite and fatigue behavior of steels [J]. Acta. Metall. Sin., 2020, 56: 459
|
24 |
徐 伟, 黄明浩, 王金亮等. 综述: 钢中亚稳奥氏体组织与疲劳性能关系 [J]. 金属学报, 2020, 56: 459
|
25 |
Bhadeshia H K D H, Dimitriu R C, Forsik S, et al. Performance of neural networks in materials science [J]. Mater. Sci. Technol., 2013, 25: 504
|
26 |
Schütt K T, Sauceda H E, Kindermans P J, et al. SchNet—A deep learning architecture for molecules and materials [J]. J. Chem. Phys., 2018, 148: 241722
|
27 |
Rodgers J R, Cebon D. Materials informatics [J]. MRS Bull., 2011, 31: 975
|
28 |
Liu Z L, Li W, Liu H, et al. Research progress of high-throughput computational screening of metal-organic frameworks [J]. Acta. Chim. Sin., 2019, 77: 323
|
28 |
刘治鲁, 李 炜, 刘 昊等. 金属有机骨架的高通量计算筛选研究进展 [J]. 化学学报, 2019, 77: 323
|
29 |
Lookman T, Alexander F J, Rajan K. Information Science for Materials Discovery and Design [M]. Cham: Springer, 2016: 1
|
30 |
Lookman T, Balachandran P V, Xue D Z, et al. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design [J]. Npj Comp. Mater., 2019, 5: 21
|
31 |
Yuan R H, Liu Z, Balachandran P V, et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning [J]. Adv. Mater., 2018, 30: 1702884
|
32 |
Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions [J]. J. Global. Optim., 1998, 13: 455
|
33 |
Tian Y, Yuan R H, Xue D Z, et al. Role of uncertainty estimation in accelerating materials development via active learning [J]. J. Appl. Phys., 2020, 128: 014103
|
34 |
Xue D Z, Balachandran P V, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design [J]. Nat. Commun., 2016, 7: 11241
|
35 |
Xue D Z, Xue D Q, Yuan R H, et al. An informatics approach to transformation temperatures of NiTi-based shape memory alloys [J]. Acta Mater., 2017, 125: 532
|
36 |
Umemoto M, Liu Z G, Tsuchiya K, et al. Relationship between hardness and tensile properties in various single structured steels [J]. Mater. Sci. Technol., 2013, 17: 505
|
37 |
Wu S, Lambard G, Liu C, et al. iQSPR in XenonPy: A bayesian molecular design algorithm [J]. Mol. Inf., 2020, 39: 1900107
|
38 |
Aldrich C. Process variable importance analysis by use of random forests in a shapley regression framework [J]. Minerals, 2020, 10: 420
|
39 |
Zhang S J. Study on high-silicon die casting aluminum alloys with high strength [D]. Ji'nan: Shandong University, 2008
|
39 |
张士佼. 高强压铸高硅铝合金的研究 [D]. 济南: 山东大学, 2008
|
40 |
Su X P. Engineering Materials [M]. Xiangtan: Xiangtan University Press, 2008: 1
|
40 |
苏旭平. 工程材料 [M]. 湘潭: 湘潭大学出版社, 2008: 1
|
41 |
Gao A H, Wang F R. Effect of Mg/Si mass ratio on microstructure and properties of 6063 alloy [J]. Mater. Heat Treat., 2012, 41(16): 23
|
41 |
高爱华, 王福荣. 镁硅质量比对6063铝合金组织和性能的影响 [J]. 材料热处理技术, 2012, 41(16): 23
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|