Please wait a minute...
金属学报  2020, Vol. 56 Issue (8): 1133-1143    DOI: 10.11900/0412.1961.2019.00365
  本期目录 | 过刊浏览 |
热处理对选区激光熔化镍基粉末高温合金组织与力学性能的影响
郝志博1, 葛昌纯1(), 黎兴刚2, 田甜1, 贾崇林3
1 北京科技大学材料科学与工程学院 北京 100083
2 南方科技大学前沿与交叉科学研究院 深圳 518055
3 中国航发北京航空材料研究院先进高温结构材料重点实验室 北京 100095
Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting
HAO Zhibo1, GE Changchun1(), LI Xinggang2, TIAN Tian1, JIA Chonglin3
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
3 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

郝志博, 葛昌纯, 黎兴刚, 田甜, 贾崇林. 热处理对选区激光熔化镍基粉末高温合金组织与力学性能的影响[J]. 金属学报, 2020, 56(8): 1133-1143.
Zhibo HAO, Changchun GE, Xinggang LI, Tian TIAN, Chonglin JIA. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. Acta Metall Sin, 2020, 56(8): 1133-1143.

全文: PDF(6480 KB)   HTML
摘要: 

以Ar气雾化法制备镍基高温合金粉末,利用选区激光熔化(SLM)技术制备了FGH4096M合金。运用OM、SEM、EBSD等手段研究了SLM沉积态和热处理态合金的组织和性能。结果表明,沉积态合金以奥氏体γ相基体为主,具有最高的延伸率。热处理后合金内析出大量的γ'相,γ'相均匀致密分布于合金内,能够明显提高合金强度。立方状或花瓣状γ'相与基体存在较高的晶格畸变,也能增加合金强度。精细的树枝结构和等轴结构对合金起到细晶强化作用。较高的固溶温度会促进SLM合金内回复和再结晶的发生,同时消除晶内树枝结构和等轴结构。沉积态合金平均延伸率为24.97%。经直接时效处理后的合金屈服强度和极限强度最高,其平均值分别为1459.46和1595.56 MPa。

关键词 镍基粉末高温合金选区激光熔化显微组织热处理    
Abstract

Nickel-based powder metallurgy superalloys have the characteristics of uniform structure, fine grains and no macrosegregation. Due to their excellent mechanical properties, such as excellent fatigue resistance, creep resistance, excellent high-temperature strength and crack propagation resistance, they have become the preferred materials for critical hot-end components such as aero engine turbine disks. Selective laser melting (SLM) has a high ability to form complex shape of parts, reducing post-machining procedures and completing efficient productions with low component volumes, so it has become a new technical route for the preparation of superalloys. In this work, the FGH4096M alloy was prepared by SLM technique with pre-powders prepared by vacuum induction argon atomization method. The microstructure and mechanical properties of the as build and heat-treated (HTed) alloys were investigated by OM, SEM, EBSD and so on. The as build alloy with a small number of γ' and carbide, mainly composed of austenite matrix γ phase, has the highest elongation. After heat treatment, a large amount of γ' phase precipitated in the alloy, which is one of the main factors affecting the mechanical properties of the alloy. The uniform and dense distribution of γ' precipitates in the alloy can significantly improve the strength. A higher lattice distortion between the γ' phase with cubic or petaloid shape and matrix can increase the strength of the alloy to some extent. Fine dendritic and equiaxed structures in SLM FGH4096M can improve the property of the alloy as fine grain strengthening. The higher solution temperature promotes the recovery and recrystallization of the SLM alloy, and eliminates the intra-crystal dendritics and equiaxed structures. The average elongation of the as build alloy is 24.97%. The yield strength and ultimate strength of the SLM FGH4096M alloy after direct ageing treatment are the highest, and the average values are 1459.46 and 1595.56 MPa, respectively.

Key wordsnickel-based powder metallurgy superalloy    selective laser melting    microstructure    heat treatment
收稿日期: 2019-11-04     
ZTFLH:  TN249  
基金资助:国家自然科学基金项目(51171016)
作者简介: 郝志博,男,1987年生,博士生
图1  FGH4096M合金粉末形貌及粒径分布
图2  选区激光熔化(SLM)沉积态FGH4096M合金的组织形貌、EBSD像及EDS分析
图3  SLM+DA (直接时效) FGH4096M 合金组织形貌与EBSD分析
图4  SLM+SSA (1050 ℃固溶+时效) FGH4096M合金组织形貌与EBSD分析
图5  SLM+SSA (1130 ℃) FGH4096M合金组织形貌与EBSD分析
图6  SLM+DSSA (双固溶+时效)FGH4096M合金组织形貌与EBSD分析
图7  SLM FGH4096M合金不同处理状态下的拉伸性能
图8  SLM FGH4096M合金不同处理状态下室温拉伸断口形貌
图9  不同处理状态下SLM FGH4096M合金局域取向差角和EBSD局域取向差分布图
[1] Tan L M, Jia J, Zhang Y W. Strengthening effect of alloying elements on powder metallurgical FGH97 superalloys [J]. Rare Met. Mater. Eng., 2017, 46: 1578
[1] (谭黎明, 贾 建, 张义文. 合金元素对镍基粉末高温合金FGH97的强化作用 [J]. 稀有金属材料与工程, 2017, 46: 1578)
[2] Tian T, Hao Z B, Jia C L, et al. Microstructure and properties of a new third generation powder metallurgy superalloy FGH100L [J]. Acta Metall. Sin., 2019, 55: 1260
doi: 10.11900/0412.1961.2018.00500
[2] (田 甜, 郝志博, 贾崇林等. 新型第三代粉末高温合金FGH100L的显微组织与力学性能 [J]. 金属学报, 2019, 55: 1260)
doi: 10.11900/0412.1961.2018.00500
[3] Liu Y H, Ning Y Q, Yao Z K, et al. Plastic deformation and dynamic recrystallization of a powder metallurgical nickel-based superalloy [J]. J. Alloys Compd., 2016, 675: 73
doi: 10.1016/j.jallcom.2016.03.093
[4] Ning Y Q, Yao Z K, Yue T W, et al. Link microstructure of FGH4096 alloy [J]. Rare Met. Mater. Eng., 2009, 38: 1783
[4] (宁永权, 姚泽坤, 岳太文等. FGH4096合金“项链”组织研究 [J]. 稀有金属材料与工程, 2009, 38: 1783)
[5] Peng Z C, Tian G F, Jiang J, et al. Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy [J]. Mater. Sci. Eng., 2016, A676: 441
[6] Liu C Z, Liu F, Huang L, et al. Effect of hot extrusion and heat treatment on microstructure of nickel-base superalloy [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2544
doi: 10.1016/S1003-6326(14)63381-1
[7] Chen Z, Xiang Y, Wei Z Y, et al. Thermal dynamic behavior during selective laser melting of K418 superalloy: Numerical simulation and experimental verification [J]. Appl. Phys., 2018, 124A: 313
[8] Choi J P, Shin G H, Yang S S, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting [J]. Powder Technol., 2017, 310: 60
doi: 10.1016/j.powtec.2017.01.030
[9] Li J, Zhao Z Y, Bai P K, et al. Microstructural evolution and mechanical properties of IN718 alloy fabricated by selective laser melting following different heat treatments [J]. J. Alloys Compd., 2019, 772: 861
doi: 10.1016/j.jallcom.2018.09.200
[10] Deng D Y, Peng R L, Brodin H, et al. Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments [J]. Mater. Sci. Eng., 2018, A713: 294
[11] Strὂßner J, Terock M, Glatzel U. Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM) [J]. Adv. Eng. Mater., 2015, 17: 1099
doi: 10.1002/adem.201500158
[12] Nadammal N, Cabeza S, Mishurova T, et al. Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718 [J]. Mater. Des., 2017, 134: 139
doi: 10.1016/j.matdes.2017.08.049
[13] Hao Z B, Tian T, Li X G, et al. Microstructure and mechanical properties of powder metallurgy superalloy FGH4096 fabricated by selective laser melting [J]. Chin. J. Rare Met., 2020, 44: 476
[13] (郝志博, 田 甜, 黎兴刚等. 选区激光熔化FGH4096高温合金的组织与性能 [J]. 稀有金属, 2020, 44: 476)
[14] Muñoz-Moreno R, Divya V D, Messé O M D M, et al. Effect of heat treatments on the microstructure and texture of CM247LC processed by selective laser melting [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys [C]. Warrendale, PA: TMS, 2016: 375
[15] Messé O M D M, Muñoz-Moreno R, Illston T, et al. Metastable carbides and their impact on recrystallisation in IN738LC processed by selective laser melting [J]. Addit. Manuf., 2018, 22: 394
[16] Wang Z M, Guan K, Gao M, et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting [J]. J. Alloys Compd., 2012, 513: 518
doi: 10.1016/j.jallcom.2011.10.107
[17] Divya V D, Muñoz-Moreno R, Messé O M D M, et al. Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment [J]. Mater. Charact., 2016, 114: 62
doi: 10.1016/j.matchar.2016.02.004
[18] Holland S, Wang X Q, Chen J, et al. Multiscale characterization of microstructures and mechanical properties of Inconel 718 fabricated by selective laser melting [J]. J. Alloys Compd., 2019, 784: 182
doi: 10.1016/j.jallcom.2018.12.380
[19] Li S, Wei Q S, Shi Y S, et al. Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2015, 31: 946
doi: 10.1016/j.jmst.2014.09.020
[20] Kunze K, Etter T, Grässlin J, et al. Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM) [J]. Mater. Sci. Eng., 2015, A620: 213
[21] Davies S J, Jeffs S P, Coleman M P, et al. Effects of heat treatment on microstructure and creep properties of a laser powder bed fused nickel superalloy [J]. Mater. Des., 2018, 159: 39
doi: 10.1016/j.matdes.2018.08.039
[22] Chlebus E, Gruber K, Kuźnicka K, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting [J]. Mater. Sci. Eng., 2015, A639: 647
[23] Hirsch M, Catchpole-Smith S, Patel R, et al. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy [J]. Proc. R. Soc. London, 2017, 473A: 20170194
[24] Marchese G, Lorusso M, Calignano F, et al. Inconel 625 by direct metal laser sintering: Effects of the process parameters and heat treatments on microstructure and hardness [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys [C]. Warrendale, PA: TMS, 2016: 1013
[25] Jia C L, Zhang F L, Li Y, et al. Investigation on microstructure evolution of a new disk superalloy under different hot process [J]. Met. Powder Rep., 2018, 73: 319
doi: 10.1016/j.mprp.2018.02.001
[26] Hao Z B, Tian T, Yang Y, et al. Effect of post-treatments on microstructure and mechanical properties of a novel nickel-based powder metallurgy superalloy processed by selective laser melting [J]. Mater. Res. Express, 2019, DOI: 10.1088/2053-1591/ab4108
doi: 10.1088/2053-1591/3/9/094001 pmid: 32391160
[27] Kanagarajah P, Brenne F, Niendorf T, et al. Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading [J]. Mater. Sci. Eng., 2013, A588: 188
[28] Tomus D, Tian Y, Rometsch P A, et al. Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting [J]. Mater. Sci. Eng., 2016, A667: 42
[29] Hao Z B, Tian T, Peng S Q, et al. Effect of heat treatment on microstructure and properties of FGH4096M superalloy processed by selective laser melting [J]. Met. Mater. Int., 2019, DOI: 10.1007/s12540-019-00467-0
[30] Academic Committee of the Superalloys, CMS. China Superalloys Handbook (Book 2) [M]. Beijing: China Quality Inspection Press, Standards Press of China, 2012: 635
[30] (中国金属学会高温材料分会. 中国高温合金手册(下卷) [M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 635)
[31] Dong K X, Yuan C, Gao S, et al. Creep properties of a powder metallurgy disk superalloy at 700 ℃ [J]. J. Mater. Res., 2017, 32: 624
doi: 10.1557/jmr.2016.510
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[8] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[9] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[10] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[11] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[12] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[13] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[14] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[15] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.