Please wait a minute...
金属学报  2019, Vol. 55 Issue (9): 1133-1144    DOI: 10.11900/0412.1961.2019.00119
  综述 本期目录 | 过刊浏览 |
航空发动机用粉末高温合金及制备技术研究进展
张国庆1,4,张义文2,3,郑亮1,4(),彭子超1
1. 北京航空材料研究院先进高温结构材料重点实验室 北京 100095
2. 钢铁研究总院高温材料研究所 北京 100081
3. 钢铁研究总院高温合金新材料北京市重点实验室 北京 100081
4. 中国航发增材制造技术创新中心 北京 100095
Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application
ZHANG Guoqing1,4,ZHANG Yiwen2,3,ZHENG Liang1,4(),PENG Zichao1
1. Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
2. High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China
3. Beijing Key Laboratory of New Superalloy Materials, Central Iron and Steel Research Institute, Beijing 100081, China
4. AECC Additive Manufacturing Technology Innovation Center, Beijing 100095, China
全文: PDF(20457 KB)   HTML
摘要: 

本文概述了我国粉末高温合金及制备技术的研究进展。在粉末制备方面,重点介绍了Ar气雾化制粉技术关键因素,包括设备、雾化过程、粒度控制、O含量控制、粉末形貌控制和夹杂控制等。针对涡轮盘件制备技术,总结了双性能涡轮盘、双合金整体叶盘技术和等温锻造模具用材料的研究进展。此外,还介绍了在粉末高温合金高通量实验和表征以及蠕变行为等方面的研究进展。结合当前航空发动机、3D打印等高端工程用材料重大需求,对我国粉末高温合金制备技术和发展方向进行了展望。

关键词 航空发动机粉末高温合金Ar气雾化制粉涡轮盘件制备技术3D打印粉末高通量实验    
Abstract

The research progress in powder metallurgy (PM) superalloys and manufacturing technologies are reviewed. The key control factors of Ar gas atomization (AA) powder manufacturing are introduced, including the aspects of the equipment development, atomization process, particle size, oxygen content, powder morphology and inclusion control. For the turbine disk manufacturing technology, the research progress of dual-property turbine disk, dual-alloy integral turbine wheel technologies and isothermal forging die materials are summarized. In the field of basic research, high-throughput experiment, advanced characterization and creep behavior of PM superalloys were introduced. According to the current major demand for aero-engines and 3D printing, the future of PM superalloys manufacturing technology is prospected.

Key wordsaero-engine    powder metallurgy superalloy    Ar gas atomized powder manufacturing    turbine disk    manufacturing technology    3D printing powder    high-throughput experiment
收稿日期: 2019-04-17     
ZTFLH:  TG132.32,TG113  
基金资助:国家重点研发计划项目(2017YFB0305800,2016YFB0701404);国家自然科学基金项目(51434007);工信部/欧盟地平线2020中欧航空科技合作项目(MJ-2015-H-G-104);英国钻石同步辐射光源项目(EE10597)
通讯作者: 郑亮     E-mail: liang.zheng@biam.ac.cn
Corresponding author: Liang ZHENG     E-mail: liang.zheng@biam.ac.cn
作者简介: 张国庆,男,1962年生,研究员,博士

引用本文:

张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
Guoqing ZHANG, Yiwen ZHANG, Liang ZHENG, Zichao PENG. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application. Acta Metall Sin, 2019, 55(9): 1133-1144.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00119      或      https://www.ams.org.cn/CN/Y2019/V55/I9/1133

图1  国内外粉末高温合金的发展
GenerationAlloyNiCoCrMoWAlTiNbHfTaCBZrVRef.
1stIN100Bal.18.512.53.2-5.04.3---0.070.020.040.75[5]
Merl76Bal.18.512.43.2-5.04.31.40.4-0.020.020.06-[5]
René95Bal.8.013.03.53.53.53.52.5--0.070.010.05-[5]
LC AstroloyBal.17.015.05.0-4.03.5---0.040.0250.04-[5]
Udimet 720Bal.14.716.03.01.252.55.0---0.0150.0180.038-[5]
2ndRené88DTBal.13.016.04.04.02.13.70.7--0.030.0150.03-[5]
N18Bal.15.511.56.5-4.34.3-0.5-0.020.015--[5]
3rdRené104/ME3Bal.20.613.03.82.13.43.70.9-2.400.050.0250.05-[15]
LSHRBal.20.812.72.74.43.53.51.5-1.70.0240.0280.049-[15]
Alloy10Bal.15.010.22.86.23.73.81.9-0.900.030.0300.10-[15]
NR3Bal.14.711.83.3-3.75.5-0.33-0.0240.0130.052-[15]
RR1000Bal.18.515.05.0-3.03.6-0.52.000.0270.0150.06-[16]
表1  欧美典型粉末高温合金成分[5,15,16]
AlloyCCoBZrCr+W+MoAl+Ti+Nb+HfNi
FGH41030.0615.50.020.0119.59.5Bal.
FGH41040.0615.00.020.0218.510.5Bal.
FGH40970.0416.00.0150.01518.510.0Bal.
表2  FGH4103、FGH4104和FGH4097合金的主要化学成分
图2  FGH4103、FGH4104和FGH4097合金的显微组织
AlloyT / ℃σb / MPaσ0.2 / MPaδ / %Ψ / %
FGH410325151311561515
FGH410425163412191719
FGH409725150010502219
FGH4104700150011401917
FGH4097700128010102122
FGH4103750128010501921
FGH4104750135011101014
FGH409775012009802425
FGH410380011209851818
表3  FGH4103、FGH4104和FGH4097合金的拉伸性能

Alloy

Stress rupture strength / MPaLCF strength (f=1 Hz) / MPa
650 ℃, 100 h750 ℃, 100 h650 ℃
FGH410311407501100 (2×104 cyc)
FGH410411106201120 (2×104 cyc)
FGH409710206801000 (0.5×104 cyc)
表4  FGH4103、FGH4104和FGH4097合金的持久强度和低周疲劳强度
图3  真空感应熔炼气雾化制粉设备示意图
图4  单相气流场局部速度云图和轴线速度曲线
图5  液滴破碎过程模拟
图6  不同粒径粉末颗粒轨迹图
图7  PIV测速实验示意图和速度矢量分布图
图8  不同雾化压力下的雾滴尺寸(水雾化物理模拟)
图9  气体含量与高温合金粉末粒度的关系
图10  Ar气雾化高温合金粉末形貌
图11  双合金整体叶盘低倍组织
图12  FGH96合金700 ℃的蠕变速率计算结果与实验结果对比图
图13  粉末到块体高温合金组织转变的高通量实验[52]与微量相变的同步辐射X射线快速表征
[1] SimsC T, StoloffN S, HagelW C. Superalloys II [M]. New York: Wiley, 1987: 1
[2] ReedR C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 2
[3] PollockT M, TinS. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties [J]. J. Prop. Power, 2006, 22: 361
[4] ShiC X, ZhongZ Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
[4] 师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
[5] TianS F, ZhangG Q, LiZ, , et al. The disk superalloys and disk manufacturing technologies for advanced aero engine [J]. J.Aeronaut. Mater., 2003, 23(suppl.): 233
[5] 田世藩, 张国庆, 李 周等. 先进航空发动机涡轮盘合金及涡轮盘制造 [J]. 航空材料学报, 2003, 23(增刊):233)
[6] ZouJ W, WangW X. Development and application of P/M superalloy [J]. J. Aeronaut. Mater., 2006, 26(3): 244
[6] 邹金文, 汪武祥. 粉末高温合金研究进展与应用 [J]. 航空材料学报, 2006, 26(3): 244)
[7] ZhangG Q, TianS F, WangW X, , et al. Manufacturing and key technology of advanced aero-engine turbine disk [J]. Adv. Mater. Ind., 2009, (11): 16
[7] 张国庆, 田世藩, 汪武祥等. 先进航空发动机涡轮盘制备工艺及其关键技术 [J]. 新材料产业, 2009, (11): 16)
[8] ZhangY W, LiuJ T. Development in powder metallurgy superalloy [J]. Mater. China, 2013, 32: 1
[8] 张义文, 刘建涛. 粉末高温合金研究进展 [J]. 中国材料进展, 2013, 32: 1
[9] QuX H, ZhangG Q, ZhangL. Applications of powder metallurgy technologies in aero-engines [J]. J. Aeronaut. Mater., 2014, 34(1): 1
[9] 曲选辉, 张国庆, 章 林. 粉末冶金技术在航空发动机中的应用 [J]. 航空材料学报, 2014, 34(1): 1)
[10] SmytheJ. Superalloy powders: An amazing history [J]. Adv. Mater. Process., 2008, 11: 52
[11] TraceyV A, CutlerC P. High-temperature alloys from powders [J]. Powder Metall., 1981, 24: 32
[12] AllenM M, AtheyR L, MooreJ B. Application of powder metallurgy to superalloy forgings [J]. Met. Eng. Quart., 1970, 10(1): 20
[13] ZhengL, LiuY F, GorleyM J, , et al. Influencing factors on differential scanning calorimetry (DSC) analysis of superalloy II: Particle size and microstructure [J]. Rare Met. Mater. Eng., 2019, 48: 1591
[13] 郑 亮, 刘玉峰, Gorley M J等. 高温合金差示扫描量热分析(DSC)的影响因素研究II: 粉末粒度和显微组织 [J]. 稀有金属材料与工程, 2019, 48: 1591
[14] ZhengL, LiuY F, LiuY, , et al. Influencing factors on differential scanning calorimetry (DSC) analysis of superalloy III: Alloy state and heating/cooling rate [J]. Rare Met. Mater. Eng., 2019, 48: 1944
[14] 郑 亮, 刘玉峰, 刘 杨等. 高温合金差示扫描量热分析(DSC)的影响因素研究 III: 合金状态和升降温速率[J]. 稀有金属材料与工程, 2019, 48: 1944
[15] HuB F, LiuG Q, JiaC C, , et al. Development in new type high-performance P/M superalloys [J]. J. Mater. Eng., 2007, (2): 49
[15] 胡本芙, 刘国权, 贾成厂等. 新型高性能粉末高温合金的研究与发展 [J]. 材料工程, 2007, (2): 49)
[16] CroxallS A, HardyM C, StoneH J, , et al. The Microstructure of RR1000 nickel-base superalloy: The FIB-SEM dual-beam approach [A]. Proceedings of the 1st International Conference on 3D Materials Science [C]. Cham: Springer, 2012: 215
[17] PowellA, BainK, WessmanA, , et al. Advanced supersolvus nickel powder disk alloy DOE: Chemistry, properties, phase formations and thermal stability [A]. Proceedings of the 13th Intenational Symposium of Superalloys [C]. Warrendal, PA: TMS, 2016: 189
[18] SmithT M, EsserB D, AntolinN, , et al. Phase transformation strengthening of high-temperature superalloys [J]. Nat. Commun., 2016, 7: 13434
[19] ZhangY W, ChiY. Recent developments of powder metallurgy superalloy in Russia [J]. Powder Metall. Ind., 2012, 22(5): 37
[19] 张义文, 迟 悦. 俄罗斯粉末冶金高温合金研制新进展 [J]. 粉末冶金工业, 2012, 22(5): 37)
[20] ZhangY W, ChiY, LiuJ T. Recent development of new type powder metallurgy superalloys in Russia [J]. Powder Metall. Ind., 2015, 25(4): 1
[20] 张义文, 迟 悦, 刘建涛. 俄罗斯新型粉末高温合金研制进展 [J]. 粉末冶金工业, 2015, 25(4): 1)
[21] LiZ, ZhangG Q, ZhangY F, , et al. Structures and properties of argon-gas atomized superalloy powders [J]. Chin. J. Nonferrous Met., 2005, 15(S2): 335
[21] 李 周, 张国庆, 张翼飞等. 氩气雾化高温合金粉末的制备及其组织与性能 [J]. 中国有色金属学报, 2005, 15(增刊2): 335)
[22] LiuY, LiZ, ZhangG Q, , et al. Flow field of double layer atomizer [J]. J. Aeronaut. Mater., 2015, 35(5): 63
[22] 刘 杨, 李 周, 张国庆等. 双层雾化器流场的模拟研究 [J]. 航空材料学报, 2015, 35(5): 63)
[23] ChengH C. Flow and heat transfer characteristics of superalloy droplets under processes of atomization and cooling solidification [D]. Beijing: Beihang University, 2017
[23] 程会川. 高温合金熔滴在雾化冷却凝固过程中的流动换热特性研究 [D]. 北京: 北京航空航天大学, 2017
[24] ZeoliN, GuS. Computational validation of an isentropic plug nozzle design for gas atomisation [J]. Comput. Mater. Sci., 2008, 42: 245
[25] SunJ F, CaoF Y, CuiC S, , et al. Dynamic behaviors of gas velocity field during metal atomization [J]. Powder Metall. Technol., 2002, 20(2): 79
[25] 孙剑飞, 曹福洋, 崔成松等. 金属雾化过程中气体流场动力学行为 [J]. 粉末冶金技术, 2002, 20(2): 79)
[26] CzischC, FritschingU. Flow-adapted design option for free-fall atomizers [J]. Atomization Sprays, 2008, 18: 511
[27] SiC R, ZhangX J, WangJ B, , et al. Design and evaluation of a Laval-type supersonic atomizer for low-pressure gas atomization of molten metals [J]. Int. J. Miner. Metall. Mater., 2014, 21: 627
[28] TingJ, AndersonI E. A computational fluid dynamics (CFD) investigation of the wake closure phenomenon [J]. Mater. Sci. Eng., 2004, A379: 264
[29] ZhaoW J, CaoF Y, NingZ L, , et al. A computational fluid dynamics (CFD) investigation of the flow field and the primary atomization of the close coupled atomizer [J]. Comput. Chem. Eng., 2012, 40: 58
[30] LiuY. Research on the flow field of gas and the atomization of molten metal [D]. Beijing: Beijing Institute of Aeronautical Materials, 2013
[30] 刘 杨. 雾化气体流场及金属液流雾化行为的研究 [D]. 北京: 北京航空材料研究院, 2013
[31] LiuN, LiZ, ZhangG Q, , et al. Oxidation characteristics of nickel-based superalloy powders prepared by argon gas atomization [J]. Chin. J. Rare Met., 2011, 35: 481
[31] 刘 娜, 李 周, 张国庆等. 氩气雾化镍基高温合金粉末的氧化特性研究 [J]. 稀有金属, 2011, 35: 481
[32] HuronE S, RothP G. The influence of inclusions on low cycle fatigue life in a P/M Ni-base disk superalloy [A]. Superalloys 1996 [C]. Warrendal, PA: TMS, 1996: 359
[33] KantzosP, BonacuseP, TelesmanJ, , et al. Effect of powder cleanliness on the fatigue behavior of powder metallurgy Ni-disk alloy Udimet 720 [A]. Superalloys 2004 [C]. Warrendal, PA: TMS, 2004: 409
[34] AttallahM M, JenningsR, WangX Q, , et al. Additive manufacturing of Ni-based superalloys: The outstanding issues [J]. MRS Bull., 2016, 41: 758
[35] MourerD P, RaymondE, GaneshS, , et al. Dual alloy disk development [A]. Superalloys 1996 [C]. Warrendal, PA: TMS, 1996: 637
[36] WangY, ZouJ W, ZhangG Q, , et al. Research on gradient heat treatment of dual-property disk for alloy FGH96 [J]. Mater. Sci. Forum, 2013, 747-748: 783
[37] MollJ H, SehwertzH H, ChandhokV K. PM dual property wheels for small engines [J]. Met. Powder Report, 1983, 38: 547
[38] WangS Y, LiH Q, YangH T. Superplastic isothermal forging technology of P/M superalloy [J]. J. Aeronaut. Mater. 2007, 27(5): 30
[38] 王淑云, 李惠曲, 杨洪涛. 粉末高温合金超塑性等温锻造技术研究 [J]. 航空材料学报, 2007, 27(5): 30)
[39] FurrerD. Forging aerospace components [J]. Adv. Mater. Process., 1999, 155: 33
[40] OhuchiK, NakazawaY, MatsunoK I. Isothermal forging of nickel-base superalloy modified IN-100 disk [J]. Mater. Trans., 1989, 30: 67
[41] LiQ, HanY F, XiaoC B, , et al. R&D status of die materials for Isothermal forging at high temperature [J]. Mater. Rev., 2004, 18(4): 9
[41] 李 青, 韩雅芳, 肖程波等. 等温锻造用模具材料的国内外研究发展状况 [J]. 材料导报, 2004, 18(4): 9)
[42] XiaoC B, HanY F, SongJ X, , et al. Study on DM02 alloy used as die material for iso-thermal forging at 1050~1100 ℃ in air [J]. J. Mater. Eng., 2005, (2): 44
[42] 肖程波, 韩雅芳, 宋尽霞等. 1050~1100 ℃大气下等温锻造用模具材料DM02合金研究 [J]. 材料工程, 2005, (2): 44)
[43] ZhaoH B, WuC X, GuoL. Development of a die material for iso-thermal forging at 1100 ℃ [J]. J. Mater. Eng., 2009,(suppl.): 18
[43] 赵会彬, 吴昌新, 郭 灵. 1100 ℃等温锻造用模具材料的研制 [J]. 材料工程, 2009, (增刊):18)
[44] ZhengY R, ZhengL, ZengQ, , et al. Formation of primary M6C carbide and its effect on cast die superalloys with high content of tungsten [J]. Acta Metall. Sin., 2004, 40: 285
[44] 郑运荣, 郑 亮, 曾 强等. 初生M6C的形成及其对高钨铸造模具高温合金的影响 [J]. 金属学报, 2004, 40: 285
[45] ZhengL, ZhangG Q, LeeT L, , et al. The effects of Ta on the stress rupture properties and microstructural stability of a novel Ni-base superalloy for land-based high temperature applications [J]. Mater. Des., 2014, 61: 61
[46] ZhouT J, FengW, ZhaoH B, , et al. Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 45
[47] ZhouT J, DingH S, MaX P, , et al. Microstructure and stress-rupture life of high W-content cast Ni-based superalloy after 1000-1100 ℃ thermal exposures [J]. Mater. Sci. Eng., 2018, A725: 299
[48] LiM Z, CoakleyJ, IsheimD, , et al. Influence of the initial cooling rate from γ′ supersolvus temperatures on microstructure and phase compositions in a nickel superalloy [J]. J. Alloys Compd., 2018, 732: 765
[49] PengZ C, TianG F, JiangJ, , et al. Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy [J]. Mater. Sci. Eng., 2016, A676: 441
[50] LiM Z, PhamM S, PengZ C, , et al. Creep deformation mechanisms and CPFE modelling of a nickel-base superalloy [J]. Mater. Sci. Eng., 2018, A718: 147
[51] XuW Y, PengZ C, LiM Z, , et al. Microstructure analysis and creep behaviour modelling of powder metallurgy superalloy [J]. Mater. Sci. Forum, 2018, 913: 134
[52] ZhengL, LeeT L, LiuN, , et al. Numerical and physical simulation of rapid microstructural evolution of gas atomised Ni superalloy powders [J]. Mater. Des., 2017, 117: 157
[1] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[2] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[3] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[4] 张义文,胡本芙. 拓扑密堆μ相对含Hf的镍基粉末高温合金组织和性能的影响*[J]. 金属学报, 2016, 52(4): 445-454.
[5] 张义文,胡本芙. 镍基粉末高温合金中微量元素Hf的作用*[J]. 金属学报, 2015, 51(8): 967-975.
[6] 唐宁, 王艳丽, 许庆彦, 赵希宏, 柳百成. 宽弦航空叶片Bridgeman定向凝固组织数值模拟[J]. 金属学报, 2015, 51(4): 499-512.
[7] 张义文,韩寿波,贾建,刘建涛,胡本芙. 微量元素Hf对镍基粉末高温合金FGH97显微组织的影响[J]. 金属学报, 2015, 51(10): 1219-1226.
[8] 弭光宝, 黄旭, 曹京霞, 曹春晓. Ti-V-Cr系阻燃钛合金的抗点燃性能及其理论分析*[J]. 金属学报, 2014, 50(5): 575-586.
[9] 马文斌,刘国权,胡本芙,贾成厂. 镍基粉末高温合金FGH96中原始粉末颗粒边界的形成机理[J]. 金属学报, 2013, 49(10): 1248-1254.
[10] 宁永权 姚泽坤. FGH4096粉末高温合金的再结晶形核机制[J]. 金属学报, 2012, 48(8): 1005-1010.
[11] 张义文 王福明 胡本芙. Hf含量对镍基粉末高温合金中γ'相形态的影响[J]. 金属学报, 2012, 48(8): 1011-1017.
[12] 胡本芙 刘国权 吴凯 田高峰. 镍基粉末冶金高温合金中γ'相形态不稳定性研究[J]. 金属学报, 2012, 48(3): 257-263.
[13] 宁永权 姚泽坤 谢兴华 郭鸿镇 谭立军 陶宇. 热模锻造+直接时效粉末高温合金的强化机制[J]. 金属学报, 2010, 46(3): 324-328.
[14] 卢磊 卢柯. 纳米孪晶金属材料[J]. 金属学报, 2010, 46(11): 1422-1427.
[15] 谢锡善; 张丽娜; 张麦仓; 董建新 . 镍基粉末高温合金中夹杂物的微观力学行为研究[J]. 金属学报, 2002, 38(6): 635-642 .