Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1219-1226    DOI: 10.11900/0412.1961.2015.00384
  本期目录 | 过刊浏览 |
微量元素Hf对镍基粉末高温合金FGH97显微组织的影响
张义文1,2(),韩寿波1,2,贾建1,2,刘建涛1,2,胡本芙3
2 钢铁研究总院高温合金新材料北京市重点实验室, 北京100081
3 北京科技大学材料科学与工程学院, 北京100083
EFFECT OF MICROELEMENT Hf ON THE MICRO- STRUCTURE OF POWDER METALLURGY SUPERALLOY FGH97
Yiwen ZHANG1,2(),Shoubo HAN1,2,Jian JIA1,2,Jiantao LIU1,2,Benfu HU3
1 High Temperature Material Institute, Central Iron and Steel Research Institute, Beijing 100081
2 Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

张义文,韩寿波,贾建,刘建涛,胡本芙. 微量元素Hf对镍基粉末高温合金FGH97显微组织的影响[J]. 金属学报, 2015, 51(10): 1219-1226.
Yiwen ZHANG, Shoubo HAN, Jian JIA, Jiantao LIU, Benfu HU. EFFECT OF MICROELEMENT Hf ON THE MICRO- STRUCTURE OF POWDER METALLURGY SUPERALLOY FGH97[J]. Acta Metall Sin, 2015, 51(10): 1219-1226.

全文: PDF(4000 KB)   HTML
摘要: 

利用SEM和物理化学相分析方法研究了5种Hf含量的FGH97粉末高温合金中γ’相和MC型碳化物形貌、化学组成及含量. 结果表明: Hf促进γ’相和MC相析出, 改变γ’相和MC相的化学组成, 对MC相的尺寸和形貌影响不大, 显著影响γ’相的尺寸和形貌, 促使γ’相的形态失稳, 导致立方状γ’相发生分裂, 使γ’相更快地进入稳定的立方状择优形态. 在FGH97合金中添加Hf, 可通过改变错配度d, 从而改变γ’相发生分裂的临界尺寸Dc. 建立了Dc与Hf含量w(Hf)的关系式: Dc=315.4+640.2w(Hf)-358.2[w(Hf)]2. 随着Hf含量的增加, |d|逐渐变小, Dc增大. γ’相长大到临界尺寸时, γ’相由立方状分裂为八重小立方体状.

关键词 粉末高温合金FGH97Hfγ’相形态稳定性MC型碳化物    
Abstract

Microelement Hf added in Ni-based powder metallurgy (PM) superalloy can modify microstructure and improve mechanical properties, such as stress-rupture life, creep resistance and crack growth resistance, and also benefit to eliminate notch sensitivity. So systematically studying the effect of microelement Hf on PM superalloy microctructure will help to comprehend its corresponding mechanism. The effects of microelement Hf on the morphologies, chemical compositions and content of γ’ phase and MC carbide in FGH97 PM Superalloy were investigated by means of SEM and physiochemical phase analysis. The results showed that Hf facilitated the precipitations of γ’ phase and MC carbide, and changed chemical compositions of γ’ phase and MC carbide, the effect of Hf on the size and morphology of MC carbide was not obvious, while Hf greatly affected the size and morphology of γ’ phase and accelerated the splitting of γ’ phase from one instable cubic γ’ particle to stable octet of cubes. As Hf affected the lattice misfit of γ’/γ phase (d), modifying Hf content changed the critical splitting size of γ’ phase (Dc). The relationship between Dc and Hf content (w(Hf)) was found to be Dc=315.4+640.2w(Hf)-358.2[w(Hf)]2. With Hf content increased, the absolute value of d decreased and Dc increased. Cubic γ’ particle split into an octet of cubes when γ’ phase grew up to the critical splitting size.

Key wordspowder metallurgy superalloy    FGH97    Hf    γ’ phase morphology stability    MC carbide
    
基金资助:* 国家国际科技合作计划资助项目2014DFR50330
Hf content γ γ’ MC M6C+M3B2
0 37.678 61.930 0.264 0.128
0.16 37.503 62.080 0.266 0.151
0.30 37.378 62.180 0.270 0.172
0.58 37.062 62.450 0.293 0.195
0.89 36.762 62.690 0.338 0.210
表1  不同Hf含量FGH97合金中的相含量
图1  Hf含量为0.30%的FGH97合金中的γ’相形貌的SEM像
图2  不同Hf含量的FGH97合金中的二次γ’相形貌的SEM像
图3  不同Hf含量的FGH97合金γ’相中Al和Hf的含量
Hf content γ’ phase at grain boundary Secondary γ’ phase Ternary γ’ phase Total
0 3.0 54.2 4.7 61.9
0.16 3.6 53.0 5.5 62.1
0.30 4.6 50.9 6.7 62.2
0.58 4.4 51.7 6.4 62.5
0.89 4.3 52.0 6.4 62.7
表2  不同Hf含量的FGH97合金中γ’相的含量
图4  Hf含量为0.30%的FGH97合金中MC型碳化物形貌的SEM像
图5  MC型碳化物含量以及MC型碳化物中Nb, Ti和Hf含量与FGH97合金中Hf含量的关系
Hf content / % γ’ phase at grain boundary Secondary γ’ phase Ternary γ’ phase
0 820 276 14
0.16 890 284 16
0.30 1450 511 18
0.58 1240 411 16
0.89 1340 409 16
表3  不同Hf含量的FGH97合金中γ’相的平均尺寸
图6  MC型碳化物中Nb, Ti和Hf含量随FGH97合金中Hf含量的变化
图7  Dc与FGH97合金中Hf含量的关系
Hf content Nb substituted by Hf Ti substituted by Hf Nb+Ti substituted by Hf
0.16 1.0 1.3 2.3
0.30 2.2 2.8 5.0
0.58 4.5 5.6 10.1
0.89 9.0 8.3 17.3
表4  不同Hf含量的FGH97合金中MC型碳化物中Ti和Nb被Hf所置换的量
Hf content / % d / % Dc / nm Da / nm
0 -0.118 321 276
0.16 -0.095 371 284
0.30 -0.075 519 511
0.58 -0.060 547 411
0.89 -0.048 608 409
  
[1] Evans D J, Eng R D. In: Hausner H H, Antes H W, Smith G D eds., Modern Developments in Powder Metallurgy. Vol.14, Princeton: MPIF and APMI, 1982: 51
[2] Белов А Ф, Аношкин Н Ф, Фаткуллин О Х. In: Банных О А ed., Жаропрочные и Жаростойские Стали и Сплавы на Никелевой Основе, Москва: Наука, 1984: 31
[3] Radavich J, Carneiro T, Furrer D, Lemsky J, Banik A. Chin J Aeronau, 2007; 20: 97
[4] Radavich J, Furrer D, Carneiro T, Lemsky J. In: Reed R C, Green K A eds., Superalloys 2008, Pennsylvania: TMS, 2008: 63
[5] Miner R V. Metall Trans, 1977; 8A: 259
[6] Larson J M, Volin T E, Larson F G. In: Braun J D, Arrowsmith H W, McCall J L eds., Microstructural Science. New York: American Elsevier Pub, 1977: 209
[7] Wang Y, Chen L Q, Khachaturyan A G. Acta Metall Mater, 1993; 41: 279
[8] Qiu Y Y. Acta Mater, 1996; 44: 4969
[9] Yoo Y S, Yoon D Y, Henry M F. Met Mater, 1995; 1: 47
[10] Qiu Y Y. J Alloys Compd, 1998; 270: 145
[11] Flageolet B, Villechaise P, Jouiad M. In: Green K A, Pollock T M, Haradra H eds., Superalloys 2004, Pennsylvania: TMS, 2004: 371
[12] Starink M J, Reed P A S. Mater Sci Eng, 2008; A491: 279
[13] Zhang Y W, Liu J T. Mater Chin, 2013; 32(1): 1 (张义文, 刘建涛. 中国材料进展, 2013; 32(1): 1)
[14] Zhang Y W, Wang F M, Hu B F. Rare Met Mater Eng, 2012; 41: 989 (张义文, 王福明, 胡本芙. 稀有金属材料与工程, 2012; 41: 989)
[15] Zhang Y W, Hu B F. Acta Metall Sin, 2015; 51: 967 (张义文, 胡本芙. 金属学报, 2015; 51: 967)
[16] Doi M, Miyazaki T, Wakatsuki T. Mater Sci Eng, 1984; 67: 247
[17] Doi M, Miyazaki T, Wakatsuki T. Mater Sci Eng, 1985; 74: 139
[18] Miyazaki T, Imamura H, Mori H, Kozakal T. J Mater Sci, 1981; 16: 1197
[19] Miyazaki T, Imamura H, Kozakai T. Mater Sci Eng, 1982; 54: 9
[20] Khachaturyan A G, Semenovskaya S V, Morris Jr J W. Acta Metall, 1988; 36: 1563
[21] Xia P C, Yu J J, Sun X F, Guan H R, Hu Z Q. J Shandong Univ Sci Technol (Nat Sci), 2009; 28(1): 51 (夏鹏成, 于金江, 孙晓峰, 管恒荣, 胡壮麒. 山东科技大学学报(自然科学版), 2009; 28(1): 51)
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[3] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[4] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[5] 郝志博, 葛昌纯, 黎兴刚, 田甜, 贾崇林. 热处理对选区激光熔化镍基粉末高温合金组织与力学性能的影响[J]. 金属学报, 2020, 56(8): 1133-1143.
[6] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[7] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[8] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[9] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[10] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[11] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[12] 张义文,胡本芙. 拓扑密堆μ相对含Hf的镍基粉末高温合金组织和性能的影响*[J]. 金属学报, 2016, 52(4): 445-454.
[13] 张义文,胡本芙. 镍基粉末高温合金中微量元素Hf的作用*[J]. 金属学报, 2015, 51(8): 967-975.
[14] 赵云松,张剑,骆宇时,唐定中,冯强. Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响[J]. 金属学报, 2015, 51(10): 1261-1272.
[15] 陈晓燕, 周亦胄, 张朝威, 金涛, 孙晓峰. Hf对一种高温合金与陶瓷材料润湿性及界面反应的影响*[J]. 金属学报, 2014, 50(8): 1019-1024.