|
|
α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 |
黄森森1,2,马英杰1( ),张仕林1,齐敏1,雷家峰1,宗亚平2,杨锐1 |
1. 中国科学院金属研究所 沈阳 110016 2. 东北大学材料科学与工程学院 沈阳 110819 |
|
Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy |
Sensen HUANG1,2,Yingjie MA1( ),Shilin ZHANG1,Min QI1,Jiafeng LEI1,Yaping ZONG2,Rui YANG1 |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
Sensen HUANG,
Yingjie MA,
Shilin ZHANG,
Min QI,
Jiafeng LEI,
Yaping ZONG,
Rui YANG.
Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. Acta Metall Sin, 2019, 55(6): 741-750.
[1] | Wang F, Cui W C. Experimental investigation on dwell-fatigue property of Ti-6Al-4V ELI used in deep-sea manned cabin [J]. Mater. Sci. Eng., 2015, A642: 136 | [2] | Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, A213: 103 | [3] | Lütjering G. Property optimization through microstructural control in titanium and aluminum alloys [J]. Mater. Sci. Eng., 1999, A263: 117 | [4] | Zhang Z Q, Dong L M, Yang Y, et al. Influences of quenching temperature on the microstructure and deformation behaviors of TC16 titanium alloy [J]. Acta Metall. Sin., 2011, 47: 1257 | [4] | (张志强, 董利民, 杨 洋等. 淬火温度对TC16钛合金显微组织及变形行为的影响 [J]. 金属学报, 2011, 47: 1257) | [5] | Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin Heidelberg: Springer, 2007: 211 | [6] | Barriobero-Vila P, Requena G, Buslaps T, et al. Role of element partitioning on the α-β phase transformation kinetics of a bi-modal Ti-6Al-6V-2Sn alloy during continuous heating [J]. J. Alloys Compd., 2015, 626: 330 | [7] | Bruneseaux F, Aeby-Gautier E, Geandier G, et al. In situ characterizations of phase transformations kinetics in the Ti17 titanium alloy by electrical resistivity and high temperature synchrotron X-ray diffraction [J]. Mater. Sci. Eng., 2008, A476: 60 | [8] | Semiatin S L, Knisley S L, Fagin P N, et al. Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V [J]. Metall. Mater. Trans., 2003, 34A: 2377 | [9] | Popov A A, Illarionov A G, Stepanov S I, et al. Effect of quenching temperature on structure and properties of titanium alloy: Structure and phase composition [J]. Phys. Met. Metallogr., 2014, 115: 507 | [10] | Song M, Ma Y J, Wu J, et al. Effect of cooling rate on microstructure and properties of Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si alloy [J]. Chin. J. Nonferrous Met., 2010, 20(suppl.): 565 | [10] | (宋 淼, 马英杰, 邬 军等. 冷却速率对Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si合金组织及性能的影响 [J]. 中国有色金属学报, 2010, 20(增刊):565) | [11] | Zeng L R, Chen H L, Li X, et al. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2018, 34: 782 | [12] | Fitzner A, Prakash D G L, da Fonseca J Q, et al. The effect of aluminium on twinning in binary alpha-titanium [J]. Acta Mater., 2016, 103: 341 | [13] | Xue Q, Ma Y J, Lei J F, et al. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2507 | [14] | Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325 | [15] | Chen Q, Ma N, Wu K S, et al. Quantitative phase field modeling of diffusion-controlled precipitate growth and dissolution in Ti-Al-V [J]. Scr. Mater., 2004, 50: 471 | [16] | Gao X X, Zeng W D, Zhang S F, et al. A study of epitaxial growth behaviors of equiaxed alpha phase at different cooling rates in near alpha titanium alloy [J]. Acta Mater., 2017, 122: 298 | [17] | Elmer J W, Palmer T A, Babu S S, et al. Phase transformation dynamics during welding of Ti-6Al-4V [J]. J. Appl. Phys., 2004, 95: 8327 | [18] | Elmer J W, Palmer T A, Babu S S, et al. In situ observations of lattice expansion and transformation rates of α and β phases in Ti-6Al-4V [J]. Mater. Sci. Eng., 2005, A391: 104 | [19] | Zhang Z, Wang Q J, Mo W. Metallurgy and Heat Treatment of Titanium Alloys [M]. Beijing: Metallurgical Industry Press, 2009: 7 | [19] | (张 翥, 王群骄, 莫 畏. 钛的金属学和热处理 [M]. 北京: 冶金工业出版社, 2009: 7) | [20] | Mishin Y, Herzig C. Diffusion in the Ti-Al system [J]. Acta Mater., 2000, 48: 589 | [21] | Tarzimoghadam Z, Sandl?bes S, Pradeep K G, et al. Microstructure design and mechanical properties in a near-α Ti-4Mo alloy [J]. Acta Mater., 2015, 97: 291 | [22] | Davis R, Flower H M, West D R F. Martensitic transformations in Ti-Mo alloys [J]. J. Mater. Sci., 1979, 14: 712 | [23] | Srivastava D, Madangopal K, Banerjee S, et al. Self accomodation morphology of martensite variants in Zr2.5-wt%Nb alloy [J]. Acta Metall. Mater., 1993, 41: 3445 | [24] | Grosdidier T, Combres Y, Gautier E, et al. Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy [J]. Metall. Mater. Trans., 2000, 31A: 1095 | [25] | Peng C, Zhang S Y, Ren L, et al. Effect of cooling rate on microstructure and properties of a Cu-containing titanium alloy [J]. Acta Metall. Sin., 2017, 53: 1377 | [25] | (彭 聪, 张书源, 任 玲等. 冷却速率对含Cu钛合金显微组织和性能的影响 [J]. 金属学报, 2017, 53: 1377) | [26] | Rugg D, Britton T B, Gong J, et al. In-service materials support for safety critical applications—A case study of a high strength Ti-alloy using advanced experimental and modelling techniques [J]. Mater. Sci. Eng., 2014, A599: 166 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|