Please wait a minute...
金属学报  2019, Vol. 55 Issue (2): 191-201    DOI: 10.11900/0412.1961.2018.00081
  本期目录 | 过刊浏览 |
一种新型高强度高塑性冷轧中锰钢的组织和力学性能
邵成伟, 惠卫军(), 张永健, 赵晓丽, 翁宇庆
北京交通大学机械与电子控制工程学院 北京 100044
Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility
Chengwei SHAO, Weijun HUI(), Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
引用本文:

邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. Acta Metall Sin, 2019, 55(2): 191-201.

全文: PDF(7409 KB)   HTML
摘要: 

研究了两相区退火温度对一种新型冷轧中锰钢(0.2C-5Mn-0.6Si-3Al,质量分数,%)显微组织及拉伸性能的影响。结果表明,在退火温度为730 ℃时,冷轧中锰钢可获得优异的强度与塑性配合,即抗拉强度为1062 MPa,总伸长率为58.2%,强塑积为61.8 GPa%。随着退火温度升高,逆转变奥氏体逐渐粗化,且由片层状组织形态逐渐向等轴状组织形态转变,在一定退火温度下可获得奥氏体晶粒尺寸分布较为宽泛的多尺度的组织形态。这种多尺度组织形态的残余奥氏体具有适当的机械稳定性,能够产生连续不断的相变诱发塑性(TRIP)效应。连续不断的TRIP效应与铁素体在变形过程中的良好配合,是冷轧中锰钢获得高强度、高塑性的主要原因。冷轧中锰钢拉伸断裂的裂纹主要萌生于软相的铁素体(δ-铁素体)及超细晶铁素体与形变诱导马氏体(残余奥氏体)的界面处。

关键词 冷轧中锰钢两相区退火微观组织残余奥氏体稳定性    
Abstract

Recently, energy conservation, environmental protection and security are the main factors considered by the automotive manufacturers. Medium-Mn steel with excellent combination of specific strength and ductility have been regarded as the potential candidates for automotive applications. The excellent combination of specific strength and ductility depends on the microstructure under different heat treatment processes of the steels. Therefore, the relationship of the combination of specific strength and ductility and microstructure should be studied in detail. A new alloy system of aluminum-containing medium-Mn steel was developed in this study. The addition of aluminum stabilizes α-ferrite, and facilitates the presence of δ-ferrite during solidification. The addition of Mn and C compensates the effect of aluminum on phase stability and ensures austenite formation. In this investigation, the effects of intercritical annealing temperature on the microstructure and tensile properties of a newly designed cold-rolled aluminum-containing medium-Mn steel (0.2C-5Mn-0.6Si-3Al, mass fraction, %) were investigated by SEM, XRD and uniaxial tensile tests. The tensile results show that an excellent combination of ultimate tensile strength (σb) of 1062 MPa, total elongation (δ) of 58.2% and σb×δ of 61.8 GPa% could be obtained after annealing at 730 ℃. The inverted austenite of the cold-rolled steel coarsenes and gradually changes its morphology from mainly lamellar to mainly equiaxed with increasing intercritical annealing temperature, and a duplex microstructure consisting of multi-scale retained austenite could be obtained at 730 ℃, which possesses suitable mechanical stability and thus presents prolonged transformation-induced plasticity (TRIP) effect during tensile deformation. This kind of sustainable TRIP effect and the cooperative deformation of ferrite are responsible for the superior mechanical properties. The investigation of tensile fracture behavior shows that the nucleation and growth of voids occurred mainly at the interfaces between soft ferrite and hard martensite induced by deformation.

Key wordscold-rolled medium-Mn steel    intercritical annealing    microstructure    retained austenite stability
收稿日期: 2018-03-08     
ZTFLH:  TG111  
基金资助:资助项目 北京交通大学人才基金项目No.M14RC00010
作者简介:

作者简介 邵成伟,男,1988年生,博士

图1  冷轧态及不同温度退火并回火处理后冷轧中锰钢试样显微组织的SEM像
图2  不同温度退火并回火后冷轧中锰钢中残余奥氏体晶粒尺寸分布及残余奥氏体晶粒尺寸变化
图3  不同温度退火并回火处理后冷轧中锰钢试样拉伸前后的XRD谱及奥氏体含量计算结果
Sample σs / MPa σb / MPa δ / % σb×δ / GPa%
700T 970 1054 25.7 27.1
730T 920 1062 58.2 61.8
750T 865 1140 49.1 56.0
770T 786 1214 40.6 50.9
800T 518 1293 18.3 23.7
850T 746 1379 12.4 17.1
表1  不同温度退火并回火处理后冷轧中锰钢试样的拉伸性能
图4  残余奥氏体的晶粒尺寸(d)与屈服强度之间的关系
图5  700T、730T和770T试样的工程应力-工程应变曲线及其加工硬化率曲线
图6  不同温度退火并回火后冷轧中锰钢试样的k值
Sample Mass fraction of Mn / % Mass fraction of C / %
In RA In F In δ-F In RA
700T 6.34±0.46 5.14±0.53 4.31±0.28 0.772
730T 6.30±0.58 4.89±0.43 4.27±0.35 0.765
750T 6.27±0.50 4.84±0.40 4.27±0.15 0.727
770T 6.25±0.60 4.88±0.38 4.23±0.23 0.701
800T 6.26±0.41 4.68±0.42 4.17±0.15 0.637
850T 6.18±0.29 4.54±0.33 4.11±0.11 0.551
表2  EDS测量及XRD数据计算的组织中Mn和C的含量
图7  700T、730T、770T和850T试样拉伸断裂后纵剖面的SEM像
图8  700T、730T、770T和850T试样拉伸断口附近纵剖面显微组织的SEM像
图9  700T和850T试样拉伸断口的SEM像
[1] Fan C G, Dong H, Yong Q L, et al.Research development of ultra-high strength low alloy steels[J]. Mater. Mech. Eng., 2006, 30(8): 1(范长刚, 董瀚, 雍岐龙等. 低合金超高强度钢的研究进展[J]. 机械工程材料, 2006, 30(8): 1)
[2] Suh D W, Kim S J.Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scr. Mater., 2017, 126: 63
[3] Lee Y K, Han J.Current opinion in medium manganese steel[J]. Mater. Sci. Technol., 2015, 31: 843
[4] Wang L D, Ding F C, Wang B M, et al.Influence of superfine substructure on toughness of low-alloying ultra-high strength structure steel[J]. Acta Metall. Sin., 2009, 45: 292(王六定, 丁富才, 王佰民等. 低合金超高强度钢亚结构超细化对韧性的影响[J]. 金属学报, 2009, 45: 292)
[5] Dong H, Cao W Q, Shi J, et al.Microstructure and performance control technology of the 3rd generation auto sheet steels[J]. Iron Steel, 2011, 46(6): 1(董瀚, 曹文全, 时捷等. 第3代汽车钢的组织与性能调控技术[J]. 钢铁, 2011, 46(6): 1)
[6] Shi J, Sun X J, Wang M Q, et al.Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite[J]. Scr. Mater., 2010, 63: 815
[7] Shi J, Cao W Q, Dong H. Ultrafine grained high strength low alloy steel with high strength and high ductility [J]. Mater. Sci. Forum, 2010, 654-656: 238
[8] Miller R L.Ultrafine-grained microstructures and mechanical properties of alloy steels[J]. Metall. Mater. Trans., 1972, 3B: 905
[9] Park K T, Lee E G, Lee C S.Reverse austenite transformation behavior of equal channel angular pressed low carbon ferrite/pearlite steel[J]. ISIJ Int., 2007, 47: 294
[10] Nakada N, Tsuchiyama T, Takaki S, et al.Variant selection of reversed austenite in lath martensite[J]. ISIJ Int., 2007, 47: 1527
[11] Hara T, Maruyama N, Shinohara Y, et al.Abnormal α to γ transformation behavior of steels with a martensite and bainite microstructure at a slow reheating rate[J]. ISIJ Int., 2009, 49: 1792
[12] Wang C, Shi J, Wang C Y, et al.Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing[J]. ISIJ Int., 2011, 51: 651
[13] Xu Y B, Hu Z P, Zou Y, et al.Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite[J]. Mater. Sci. Eng., 2017, A688: 40
[14] Shao C W, Hui W J, Zhang Y J, et al.Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum[J]. Mater. Sci. Eng., 2017, A682: 45
[15] Cai Z H, Ding H, Ying Z Y, et al.Microstructural evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel[J]. J. Mater. Eng. Perform., 2014, 23: 1131
[16] Matlock D K, Speer J G, De Moor E, et al.Recent developments in advanced high strength sheet steels for automotive applications: An overview[J]. JESTECH, 2012, 15: 1
[17] Lacroix G, Pardoen T, Jacques P J.The fracture toughness of TRIP-assisted multiphase steels[J]. Acta Mater., 2008, 56: 3900
[18] Chin K G, Kang C Y, Shin S Y, et al.Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels[J]. Mater. Sci. Eng., 2011, A528: 2922
[19] Choi H, Lee S, Lee J, et al.Characterization of fracture in medium Mn steel[J]. Mater. Sci. Eng., 2017, A687: 200
[20] Fan X.Metallic X-Ray Physics [M]. Beijing: Mechanical Industry Press, 1989: 159(范雄. 金属X射线学 [M]. 北京: 机械工业出版社, 1989: 159)
[21] Zhao X L, Zhang Y J, Shao C W, et al.Hydrogen embrittlement of intercritically annealed cold-rolled 0.1C-5Mn steel[J]. Acta Metall. Sin., 2018, 54: 1031(赵晓丽, 张永健, 邵成伟等. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54: 1031)
[22] Zhang M D, Cao W Q, Dong H, et al.Element partitioning effect on microstructure and mechanical property of the micro-laminated Fe-Mn-Al-C-dual phase steel[J]. Mater. Sci. Eng., 2016, A654: 193
[23] Hu B, Luo H W.A strong and ductile 7Mn steel manufactured by warm rolling and exhibiting both transformation and twinning induced plasticity[J]. J. Alloys Compd., 2017, 725: 684
[24] Jung Y S, Lee Y K, Matlock D K, et al.Effect of grain size on strain-induced martensitic transformation start temperature in an ultrafine grained metastable austenitic steel[J]. Met. Mater. Int., 2011, 17: 553
[25] Embury D, Bouaziz O.Steel-based composites: Driving forces and classification[J]. Annu. Rev. Mater. Res., 2010, 40: 213
[26] Cai Z H, Ding H, Misra R D K, et al.Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content[J]. Acta Mater., 2015, 84: 229
[27] Li Z C, Ding H, Cai Z H, et al.Mechanical properties and austenite stability in hot-rolled 0.2C-1.6/3.2Al-6Mn-Fe TRIP steel[J]. Mater. Sci. Eng., 2015, A639: 559
[28] Li Z C, Misra R D K,Cai Z H, et al. Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect[J]. Mater. Sci. Eng., 2016, A673: 63
[29] Sugimoto K I, Usui N, Kobayashi M, et al.Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels[J]. ISIJ Int., 1992, 32: 1311
[30] Sugimoto K, Usui N, Kobayashi M, et al.Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel[J]. Metall. Mater. Trans., 1992, 23A: 3685
[31] Takaki S, Fukimaga K, Syarif J, et al.Effect of grain refinement on thermal stability of metastable austenitic steel[J]. Mater. Trans., 2004, 45: 2245
[32] Matsuoka Y, Iwasaki T, Nakada N, et al.Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel[J]. ISIJ Int., 2013, 53: 1224
[33] Avramovic-Cingara G, Saleh C A R, Jain M K, et al. Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing[J]. Metall. Mater. Trans., 2009, 40A: 3117
[34] Han S K, Margolin H.Void formation, void growth and tensile fracture of plain carbon steel and a dual-phase steel[J]. Mater. Sci. Eng., 1989, A112: 133
[35] Erdogan M.The effect of new ferrite content on the tensile fracture behaviour of dual phase steels[J]. J. Mater. Sci., 2002, 37: 3623
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[15] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.