|
|
非连续增强铝基复合材料的热变形行为研究进展 |
肖伯律( ), 黄治冶, 马凯, 张星星, 马宗义 |
中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016 |
|
Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites |
Bolü XIAO( ), Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
肖伯律, 黄治冶, 马凯, 张星星, 马宗义. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1): 59-72.
Bolü XIAO,
Zhiye HUANG,
Kai MA,
Xingxing ZHANG,
Zongyi MA.
Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. Acta Metall Sin, 2019, 55(1): 59-72.
[1] | MarketsandMarkets. Metal matrix composite market by type (aluminum MMC, magnesium MMC, refractory MMC), production technology, reinforcement (continuous, discontinuous, particle), end use industry, and region-global forecast to 2021 [R]. Birmingham: Marketsandmarkets, 2017 | [2] | Nardone V C, Prewo K M.On the strength of discontinuous silicon carbide reinforced aluminum composites[J]. Scr. Metall., 1986, 20: 43 | [3] | Evans A, San Marchi C, Mortensen A.Metal Matrix Composites in Industry: An Introduction and a Survey[M]. Boston, MA: Springer, 2003: 22 | [4] | Divecha A P, Fishman S G, Karmarkar S D.Silicon carbide reinforced aluminum—A formable composite[J]. JOM, 1981, 33(9): 12 | [5] | Zhang W L, Wang J X, Yang F, et al.Recrystallization kinetics of cold-rolled squeeze-cast Al/SiC/15w composites[J]. J. Compos. Mater., 2006, 40: 1117 | [6] | Jahedi M, Mani B, Shakoorian S, et al.Deformation rate effect on the microstructure and mechanical properties of Al-SiCp composites consolidated by hot extrusion[J]. Mater. Sci. Eng., 2012, A556: 23 | [7] | Stonis M, Rüther T, Behrens B A.Analysis of material characteristics and forging parameters for flashless forged aluminum-matrix composites[J]. Mater. Manuf. Processes, 2014, 29: 140 | [8] | Tham L M, Gupta M, Cheng L.Effect of reinforcement volume fraction on the evolution of reinforcement size during the extrusion of Al-SiC composites[J]. Mater. Sci. Eng., 2002, A326: 355 | [9] | Huang Z Y, Zhang X X, Xiao B L, et al.Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite[J]. J. Alloys Compd., 2017, 722: 145 | [10] | El-Sabbagh A M, Soliman M, Taha M A, et al. Effect of rolling and heat treatment on tensile behaviour of wrought Al-SiCp composites prepared by stir-casting[J]. J. Mater. Process. Technol., 2013, 213: 1669 | [11] | Zhou L, Huang Z Y, Wang C Z, et al.Constitutive flow behaviour and finite element simulation of hot rolling of SiCp/2009Al composite[J]. Mech. Mater., 2016, 93: 32 | [12] | Pakdel A, Witecka A, Rydzek G, et al.A comprehensive analysis of extrusion behavior, microstructural evolution, and mechanical properties of 6063 Al-B4C composites produced by semisolid stir casting[J]. Mater. Sci. Eng., 2018, A721: 28 | [13] | Shi W C, Shan D B.Effect of whisker breakage on the forgeability and the tensile properties of the forged 2024Al/Al18B4O33w composite[J]. Mater. Charact., 2018, 135: 303 | [14] | Zhang J Q, Di H S, Mao K, et al.Processing maps for hot deformation of a high-Mn TWIP steel: A comparative study of various criteria based on dynamic materials model[J]. Mater. Sci. Eng., 2013, A587: 110 | [15] | Cui X F, Mi X J, Luo Z, et al.Effects of Cr content on the hot compression deformation behavior of Ti5Mo5V3Al-xCr alloys[J]. J. Mater. Eng. Perform., 2015, 24: 67 | [16] | Johnson G R, Cook W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [R]. The Hague: International ballistics Society, 1983 | [17] | Bodner S R, Partom Y.Constitutive equations for elastic-viscoplastic strain-hardening materials[J]. J. Appl. Mech., 1975, 42: 385 | [18] | Fields D S, Backofen W A.Determination of strain hardening characteristics by torsion testing [A]. Proceedings of the 60th Annual Meeting of the American Society for Testing and Materials[C]. West Conshohocken: ASTM International, 1957: 1259 | [19] | Khan A S, Huang S J.Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-104 s-1[J]. Int. J. Plast., 1992, 8: 397 | [20] | Khan A S, Liang R Q.Behaviors of three BCC metal over a wide range of strain rates and temperatures: Experiments and modeling[J]. Int. J. Plast., 1999, 15: 1089 | [21] | Khan A S, Liang R Q.Behaviors of three BCC metals during non-proportional multi-axial loadings: Experiments and modeling[J]. Int. J. Plast., 2000, 16: 1443 | [22] | Khan A S, Suh Y S, Kazmi R.Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J]. Int. J. Plast., 2004, 20: 2233 | [23] | Chen G, Li J, He Y L, et al.A new approach to the determination of plastic flow stress and failure initiation strain for aluminum alloys cutting process[J]. Comput. Mater. Sci., 2014, 95: 568 | [24] | Siswanto W A, Nagentrau M, Mohd Tobi A L, et al. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis[J]. J. Mech. Sci. Technol., 2016, 30: 5093 | [25] | Zerilli F J, Armstrong R W.Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. J. Appl. Phys., 1987, 61: 1816 | [26] | Follansbee P S, Kocks U F.A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta Metall., 1988, 36: 81 | [27] | Nemat-Nasser S, Isaacs J B.Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys[J]. Acta Mater., 1997, 45: 907 | [28] | Shafieizad A H, Zarei-Hanzaki A, Ghambari M, et al.High temperature flow behavior and microstructure of Al-Cu/Mg2Si metal matrix composite[J]. J. Eng. Mater. Technol., 2015, 137: 021006 | [29] | Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metall., 1966, 14: 1136 | [30] | Nardone V C, Strife J R.Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4)[J]. Metall. Trans., 1987, 18A: 109 | [31] | Nieh T G, Xia K, Langdon T G.Mechanical properties of discontinuous SiC reinforced aluminum composites at elevated temperatures[J]. J. Eng. Mater. Technol., 1988, 110: 77 | [32] | McQueen H J, Ryan N D. Constitutive analysis in hot working[J]. Mater. Sci. Eng., 2002, A322: 43 | [33] | Mohamed F A, Park K T, Lavernia E J.Creep behavior of discontinuous SiC-Al composites[J]. Mater. Sci. Eng., 1992, A150: 21 | [34] | Park K T, Lavernia E J, Mohamed F A.High-temperature deformation of 6061 Al[J]. Acta Metall. Mater., 1994, 42: 667 | [35] | Mishra R S, Bieler T R, Mukherjee A K.Superplasticity in powder metallurgy aluminum alloys and composites[J]. Acta Metall. Mater., 1995, 43: 877 | [36] | Li Y, Nutt S R, Mohamed F A.An investigation of creep and substructure formation in 2124 Al[J]. Acta Mater., 1997, 45: 2607 | [37] | Mishra R S, Bieler T R, Mukherjee A K.Mechanism of high strain rate superplasticity in aluminium alloy composites[J]. Acta Mater., 1997, 45: 561 | [38] | Li Y, Langdon T G.A unified interpretation of threshold stresses in the creep and high strain rate superplasticity of metal matrix composites[J]. Acta Mater., 1999, 47: 3395 | [39] | Kaibyshev R, Kazyhanov V, Musin F.Hot plastic deformation of aluminium alloy 2009-15%SiCw composite[J]. Mater. Sci. Technol., 2002, 18: 777 | [40] | Kocks U F.A statistical theory of flow stress and work-hardening[J]. Philos. Mag., 1966, 13A: 541 | [41] | Arzt E, Wilkinson D S.Threshold stresses for dislocation climb over hard particles: The effect of an attractive interaction[J]. Acta Metall., 1986, 34: 1893 | [42] | Arzt E, R?sler J.The kinetics of dislocation climb over hard particles—II. Effects of an attractive particle-dislocation interaction[J]. Acta Metall., 1988, 36: 1053 | [43] | Mishra R S, Nandy T K, Greenwood G W.The threshold stress for creep controlled by dislocation-particle interaction[J]. Philos. Mag., 1994, 69A: 1097 | [44] | Xia X X, McQueen H J, Sakaris P. Hot deformation mechanisms in a 10 vol% Al2O3 particle reinforced 6061 Al matrix composite[J]. Scr. Metall. Mater., 1995, 32: 1185 | [45] | Xia X X, McQueen H J. Deformation behaviour and microstructure of a 20% Al2O3 reinforced 6061 Al composite[J]. Appl. Compos. Mater., 1997, 4: 333 | [46] | Cerri E, Spigarelli S, Evangelista E, et al.Hot deformation and processing maps of a particulate-reinforced 6061+20% Al2O3 composite[J]. Mater. Sci. Eng., 2002, A324: 157 | [47] | Ferry M, Munroe P R.Hot working behaviour of Al-Al2O3 particulate reinforced metal matrix composite[J]. Mater. Sci. Technol., 1995, 11: 633 | [48] | Qin J, Zhang Z, Chen X G.Hot deformation and processing maps of Al-15%B4C composites containing Sc and Zr[J]. J. Mater. Eng. Perform., 2017, 26: 1673 | [49] | Sun Y L, Xie J P, Hao S M, et al.Dynamic recrystallization model of 30%SiCp/Al composite[J]. J. Alloys Compd., 2015, 649: 865 | [50] | Yavari P, Mohamed F A, Langdon T G.Creep and substructure formation in an Al-5% Mg solid solution alloy[J]. Acta Metall., 1981, 29: 1495 | [51] | Li Y, Langdon T G.Creep behavior of an Al-6061 metal matrix composite reinforced with alumina particulates[J]. Acta Mater., 1997, 45: 4797 | [52] | Kaibyshev R, Sitdikov O, Mazurina I, et al.Deformation behavior of a 2219 Al alloy[J]. Mater. Sci. Eng., 2002, A334: 104 | [53] | Wang S, Luo J R, Hou L G, et al.Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression[J]. Mater. Des., 2016, 107: 277 | [54] | Wang S, Luo J R, Hou L G, et al.Identification of the threshold stress and true activation energy for characterizing the deformation mechanisms during hot working[J]. Mater. Des., 2017, 113: 27 | [55] | European Committee for Standardization. EVS-EN 1999-1-2:2007 Design of aluminium structures—Part 1-2: Structural fire design[S]. London: British Standard Institute, 2007: 21 | [56] | Maljaars J, Soetens F, Katgerman L.Constitutive model for aluminum alloys exposed to fire conditions[J]. Metall. Mater. Trans., 2008, 39A: 778 | [57] | Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metall. Trans., 1984, 15A: 1883 | [58] | Prasad Y V R K. Author's reply: Dynamic materials model: Basis and principles[J]. Metall. Mater. Trans., 1996, 27A: 235 | [59] | Murty S V S N, Sarma M S, Rao B N. On the evaluation of efficiency parameters in processing maps[J]. Metall. Mater. Trans., 1997, 28A: 1581 | [60] | Bhat B V R, Mahajan Y R, Roshan H M, et al. Processing maps for hot-working of powder metallurgy 1100 Al-10 vol % SiC-particulate metal-matrix composite[J]. J. Mater. Sci., 1993, 28: 2141 | [61] | Bhat B V R, Mahajan Y R, Roshan H M, et al. Characteristics of superplasticity domain in the processing map for hot working of an Al alloy 2014-20vol.%Al2O3 metal matrix composite[J]. Mater. Sci. Eng., 1994, A189: 137 | [62] | Murty S V S N, Rao B N. Instability map for hot working of 6061 Al-10 vol% Al2O3 metal matrix composite[J]. J. Phys., 1998, 31D: 3306 | [63] | Kai X Z, Zhao Y T, Wang A D, et al.Hot deformation behavior of in situ nano ZrB2 reinforced 2024Al matrix composite[J]. Compos. Sci. Technol., 2015, 116: 1 | [64] | Xu W C, Jin X Z, Xiong W D, et al.Study on hot deformation behavior and workability of squeeze-cast 20 vol%SiCw/6061Al composites using processing map[J]. Mater. Charact., 2018, 135: 154 | [65] | Zhu F J, Wu H Y, Lin M C, et al.Hot workability analysis and development of a processing map for homogenized 6069 Al alloy cast ingot[J]. J. Mater. Eng. Perform., 2015, 24: 2051 | [66] | Kai X Z, Chen C, Sun X F, et al.Hot deformation behavior and optimization of processing parameters of a typical high-strength Al-Mg-Si alloy[J]. Mater. Des., 2016, 90: 1151 | [67] | Fan C H, Peng Y B, Yang H T, et al.Hot deformation behavior of Al-9.0Mg-0.5Mn-0.1Ti alloy based on processing maps[J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 289 | [68] | Shao J C, Xiao B L, Wang Q Z, et al.Constitutive flow behavior and hot workability of powder metallurgy processed 20 vol.%SiCp/2024Al composite[J]. Mater. Sci. Eng., 2010, A527: 7865 | [69] | Bhat B V R, Mahajan Y R, Roshan H M, et al. Processing map for hot working of 6061 Al-10 vol.-%Al2O3 metal matrix composite[J]. Mater. Sci. Technol., 1995, 11: 167 | [70] | Xiao B L, Fan J Z, Tian X F, et al.Hot deformation and processing map of 15%SiCp/2009 Al composite[J]. J. Mater. Sci., 2005, 40: 5757 | [71] | Wang C X, Yu F X, Zhao D Z, et al.Hot deformation and processing maps of DC cast Al-15%Si alloy[J]. Mater. Sci. Eng., 2013, A577: 73 | [72] | Wang K X, Zeng W D, Zhao Y Q, et al.Hot working of Ti-17 titanium alloy with lamellar starting structure using 3-D processing maps[J]. J. Mater. Sci., 2010, 45: 5883 | [73] | Wang S, Hou L G, Luo J R, et al.Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3-D processing map[J]. J. Mater. Process. Technol., 2015, 225: 110 | [74] | Mokdad F, Chen D L, Liu Z Y, et al.Three-dimensional processing maps and microstructural evolution of a CNT-reinforced Al-Cu-Mg nanocomposite[J]. Mater. Sci. Eng., 2017, A702: 425 | [75] | Liu J, Cui Z S, Li C X.Analysis of metal workability by integration of FEM and 3-D processing maps[J]. J. Mater. Process. Technol., 2008, 205: 497 | [76] | Weertman J.Steady-state creep of crystals[J]. J. Appl. Phys., 1957, 28: 1185 | [77] | Mabuchi M, Iwasaki H, Higashi K, et al.Processing and superplastic properties of fine grained Si3N4/Al-Mg-Si composites[J]. Mater. Sci. Technol., 1995, 11: 1295 | [78] | Zhang J Q, Di H S, Wang H T, et al.Hot deformation behavior of Ti-15-3 titanium alloy: A study using processing maps, activation energy map, and Zener-Hollomon parameter map[J]. J. Mater. Sci., 2012, 47: 4000 | [79] | Watanabe H, Mukai T, Higashi K.Influence of temperature and grain size on threshold stress for superplastic flow in a fine-grained magnesium alloy[J]. Metall. Mater. Trans., 2008, 39A: 2351 | [80] | Malas J C.A thermodynamic and continuum approach to the design and control of precision forging processes [D]. Dayton, Ohio: Wright State University, 1985 | [81] | Gegel H L, Malas J C, Doraivelu S M, et al.Metals Handbook[M]. Chagrin Falls: ASM International, 1988: 417 | [82] | Alexander J M.Mapping dynamic material behaviour [A]. Modelling Hot Deformation of Steels[M]. Berlin, Heidelberg: Springer, 1989: 101 | [83] | Malas III J C. Methodology for design and control of thermomechanical processes [D]. Ann Arbor: Ohio University, 1991 | [84] | Murty S V S N, Rao B N, Kashyap B P. Instability criteria for hot deformation of materials[J]. Int. Mater. Rev., 2000, 45: 15 | [85] | Cavaliere P, Cerri E, Leo P.Hot deformation and processing maps of a particulate reinforced 2618/Al2O3/20p metal matrix composite[J]. Compos. Sci. Technol., 2004, 64: 1287 | [86] | Gholinia A, Humphreys F J, Prangnell P B.Production of ultra-fine grain microstructures in Al-Mg alloys by coventional rolling[J]. Acta Mater., 2002, 50: 4461 | [87] | Exell S F, Warrington D H.Sub-grain boundary migration in aluminium[J]. Philos. Mag., 1972, 26A: 1121 | [88] | Huang Y, Humphreys F J, Brough I.The application of a hot deformation SEM stage, backscattered electron imaging and EBSD to the study of thermomechanical processing[J]. J. Microsc., 2002, 208: 18 | [89] | Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena[M]. 2nd Ed., Amsterdam: Elsevier, 2004: 169 | [90] | Fatemi-Varzaneh S M, Zarei-Hanzaki A, Beladi H. Dynamic recrystallization in AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2007, A456: 52 | [91] | Al-Samman T, Gottstein G.Dynamic recrystallization during high temperature deformation of magnesium[J]. Mater. Sci. Eng., 2008, A490: 411 | [92] | Ponge D, Gottstein G.Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior[J]. Acta Mater., 1998, 46: 69 | [93] | Marandi A, Zarei-Hanzaki R, Zarei-Hanzaki A, et al.Dynamic recrystallization behavior of new transformation-twinning induced plasticity steel[J]. Mater. Sci. Eng., 2014, A607: 397 | [94] | Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al.Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718[J]. Mater. Sci. Eng., 2016, A678: 137 | [95] | Galiyev A, Kaibyshev R, Gottstein G.Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Mater., 2001, 49: 1199 | [96] | Drury M R, Humphreys F J.The development of microstructure in Al-5% Mg during high temperature deformation[J]. Acta Metall., 1986, 34: 2259 | [97] | Cavaliere P, Evangelista E.Isothermal forging of metal matrix composites: Recrystallization behaviour by means of deformation efficiency[J]. Compos. Sci. Technol., 2006, 66: 357 | [98] | Hu H E, Zhen L, Zhang B Y, et al.Microstructure characterization of 7050 aluminum alloy during dynamic recrystallization and dynamic recovery[J]. Mater. Charact., 2008, 59: 1185 | [99] | Lee J W, Son K T, Jung T K, et al.Continuous dynamic recrystallization behavior and kinetics of Al-Mg-Si alloy modified with CaO-added Mg[J]. Mater. Sci. Eng., 2016, A673: 648 | [100] | Humphreys F J, Miller W S, Djazeb M R.Microstructural deve-lopment during thermomechanical processing of particulate metal-matrix composites[J]. Mater. Sci. Technol., 1990, 6: 1157 | [101] | Humphreys F J.The thermomechanical processing of Al-SiC particulate composites[J]. Mater. Sci. Eng., 1991, A135: 267 | [102] | Xia X X, Sakaris P, McQueen H J. Hot deformation, dynamic recovery, and recrystallisation behaviour of aluminium 6061-SiCp composite[J]. Mater. Sci. Technol., 1994, 10: 487 | [103] | Ashby M F.The deformation of plastically non-homogeneous materials[J]. Philos. Mag., 1970, 21A: 399 | [104] | Humphreys F J.The nucleation of recrystallization at second phase particles in deformed aluminium[J]. Acta Metall., 1977, 25: 1323 | [105] | Clyne T W, Withers P J.An Introduction to Metal Matrix Composites [M]. Cambridge: Cambridge University Press, 1993: 73 | [106] | Ceschini L, Minak G, Morri A.Forging of the AA2618/20 vol.% Al2O3p composite: Effects on microstructure and tensile properties[J]. Compos. Sci. Technol., 2009, 69: 1783 | [107] | Xu H, Palmiere E J.Particulate refinement and redistribution during the axisymmetric compression of an Al/SiCp metal matrix composite[J]. Composites, 1999, 30A: 203 | [108] | Seo Y H, Kang C G.Effects of hot extrusion through a curved die on the mechanical properties of SiCp/Al composites fabricated by melt-stirring[J]. Compos. Sci. Technol., 1999, 59: 643 | [109] | Hanada K, Murakoshi Y, Negishi H, et al.Microstructures and mechanical properties of Al-Li/SiCp composite produced by extrusion processing[J]. J. Mater. Process. Technol., 1997, 63: 405 | [110] | Essa Y E S, Fernández-Sáez J, Pérez-Castellanos J L. Some aspects of damage and failure mechanisms at high strain-rate and elevated temperatures of particulate magnesium matrix composites[J]. Composites, 2003, 34B: 551 | [111] | Yuan L, Shi W C, Shivpuri R, et al.Increased hot forgeability of 2024Al/Al18B4O33w whisker composites at high strain rates[J]. J. Mater. Process. Technol., 2017, 243: 456 | [112] | Zhao P T, Wang L D, Du Z M, et al.Low temperature extrusion of 6061 aluminum matrix composite reinforced with SnO2-coated Al18B4O33 whisker[J]. Composites, 2012, 43A: 183 | [113] | Borrego A, Fernández R, del Carmen Cristina M, et al. Influence of extrusion temperature on the microstructure and the texture of 6061Al-15 vol.% SiCw PM composites[J]. Compos. Sci. Technol., 2002, 62: 731 | [114] | Shi W C, Yuan L, Xu F C, et al.Refining whisker size of 2024Al/Al18B4O33w composite through extrusion and its effects on the material's micro-structures and mechanical properties[J]. Mater. Charact., 2018, 138: 98 | [115] | Hong S H, Chung K H, Lee C H.Effects of hot extrusion parameters on the tensile properties and microstructures of SiCw-2124Al composites[J]. Mater. Sci. Eng., 1996, A206: 225 | [116] | Choi H, Shin J, Min B, et al.Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites[J]. J. Mater. Res., 2011, 24: 2610 | [117] | Liu Z Y, Xiao B L, Wang W G, et al.Effect of carbon nanotube orientation on mechanical properties and thermal expansion coefficient of carbon nanotube-reinforced aluminum matrix composites[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 901 | [118] | Mokdad F, Chen D L, Liu Z Y, et al.Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite[J]. Carbon, 2016, 104: 64 | [119] | Kwon H, Estili M, Takagi K, et al.Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J]. Carbon, 2009, 47: 570 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|