Please wait a minute...
金属学报  2018, Vol. 54 Issue (9): 1333-1342    DOI: 10.11900/0412.1961.2018.00009
  本期目录 | 过刊浏览 |
Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究
张海峰, 闫海乐, 贾楠(), 金剑锋, 赵骧
东北大学材料科学与工程学院材料各向异性与织构教育部重点实验室 沈阳 110819
Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling
Haifeng ZHANG, Haile YAN, Nan JIA(), Jianfeng JIN, Xiang ZHAO
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. Acta Metall Sin, 2018, 54(9): 1333-1342.

全文: PDF(9396 KB)   HTML
摘要: 

利用分子动力学方法对具有特征晶体取向的Cu/Ti层状复合体在单轴拉伸和平面应变压缩2种变形过程中的微观力学行为进行了研究。模拟结果显示,拉伸载荷作用下,位错优先在Cu/Ti异质界面处形核并沿着{111}晶面向Cu层内部运动,变形机制为层内约束滑移。随着位错的增殖,位错之间发生交互作用并在Cu层内形成插入型层错和形变孪晶。而在此形变过程中Ti层内未发现塑性变形系统的启动。随着载荷继续增大,Cu/Ti界面处的应力集中导致复合体发生断裂。在平面应变压缩变形的模拟中,发现Cu/Ti界面处的应力集中促使Ti层中形成剪切带,剪切带内部及其近邻区域仅存在少量位错。随着外加应变增大,多种变形机制的共同作用引起晶粒旋转,同时复合体内的原子无序度增加。此外,不同初始取向和不同应变速率下的Cu/Ti复合体的微观塑性变形机制和力学性能存在显著差异。研究结果揭示了包含有密排六方金属层状复合材料的微观形变机制。

关键词 层状复合体位错剪切带塑性变形分子动力学模拟    
Abstract

Multilayered metallic composites have attracted great interest because of their excellent characteristics. In recent years, the mechanical behavior of Cu/Ti composites is described in terms of macroscopic or mesoscopic scales, but the micromechanism regarding dislocation slip, twinning and shear banding at heterogeneous interfaces remains unclear. In this work, the molecular dynamics method is used to study the uniaxial tensile and plane strain compression deformation of the Cu/Ti multilayered composites with characteristic initial crystal orientations. The simulation results show that under the tensile load, dislocations are preferentially nucleated at the heterogeneous interface between Cu and Ti, and then slip along {111} plane within the Cu layers. The corresponding mechanism is confined layer slip. With the multiplication of dislocations, dislocations interact with each other, and intrinsic stacking faults and deformation twins are formed in Cu layers. However, no dislocation slip or twinning is activated within the Ti layers at this stage of deformation. As the load increases, the stress concentration at the Cu/Ti interface leads to the fracture of the composites. For the composites under plane strain compression, the stress concentration at the Cu/Ti interface triggers the formation of shear bands in the Ti layer, and there are only very limited dislocations within the shear bands and their adjacent area. With the increase of applied strain, the common action of various deformation mechanisms causes the grains to rotate, and the disorder degree of complex atoms increases. In addition, the micro-plastic deformation mechanism and mechanical properties of Cu/Ti complex with different initial orientations and strain rates are significantly different. The results reveal the microscopic deformation mechanism of the laminated composites containing hcp metals.

Key wordsmultilayered composite    dislocation    shear band    plastic deformation    molecular dynamics simulation
收稿日期: 2018-01-08     
ZTFLH:  TB331  
基金资助:国家自然科学基金项目No.51571057及教育部中央高校基本科研业务费项目No.N170204012
作者简介:

作者简介 张海峰,男,1994年生,硕士生

图1  Cu/Ti层状复合体的拉伸和平面应变压缩模型示意图
Model Layer Axis Orientation
X Y Z
I/III Cu [111] [110] [112] Copper
Ti [1010] [1210] [0001] Basal
II/IV Cu [100] [011] [011] Goss
Ti [1010] [1210] [0001] Basal
表1  复合体模型中Cu层和Ti层的初始取向
图2  单轴拉伸和平面应变压缩过程中各模型的应力-应变曲线
图3  模型I在单轴拉伸过程中的原子结构
图4  模型II在单轴拉伸过程中的原子结构
图5  模型III在平面应变压缩过程中的原子结构
图6  模型IV在平面应变压缩过程中的原子结构
图7  模型III和模型IV在变形前后的径向分布函数
图8  不同应变速率下模型III和模型IV的应力-应变曲线
图9  应变速率为1011 s-1时模型III和模型IV的原子结构
[1] Misra A, Thilly L.Structural metals at extremes[J]. MRS Bull., 2010, 35: 965
[2] Han W Z, Misra A, Mara N A, et al.Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates[J]. Philos. Mag., 2011, 91: 4172
[3] Lee S B, LeDonne J E, Lim S C V, et al. The heterophase interface character distribution of physical vapor-deposited and accumulative roll-bonded Cu-Nb multilayer composites[J]. Acta Mater., 2012, 60: 1747
[4] Li X Y, Lu K.Playing with defects in metals[J]. Nat. Mater., 2017, 16: 700
[5] Lu L, Chen X, Huang X, et al.Revealing the maximum strength in nanotwinned copper[J]. Science, 2009, 323: 607
[6] Liu X C, Zhang H W, Lu K.Formation of nanolaminated structure in an interstitial-free steel[J]. Scr. Mater., 2015, 95: 54
[7] Liu X C, Zhang H W, Lu K.Strain-induced ultrahard and ultrastable nanolaminated structure in nickel[J]. Science, 2013, 342: 337
[8] Song H Y, Li Y L.Effect of stacking fault and temperature on deformation behaviors of nanocrystalline Mg[J]. J. Appl. Phys., 2012, 112: 054322
[9] Zhu X Y, Liu X J, Zong R L, et al.Microstructure and mechanical properties of nanoscale Cu/Ni multilayers[J]. Mater. Sci. Eng., 2010, A527: 1243
[10] Hu G X, Cai X, Rong Y H.Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 129(胡赓祥, 蔡珣, 戎咏华. 材料科学基础 [M]. 第3版. 上海: 上海交通大学出版社, 2010: 129)
[11] Zhang R F, Germann T C, Wang J, et al.Role of interface structure on the plastic response of Cu/Nb nanolaminates under shock compression: Non-equilibrium molecular dynamics simulations[J]. Scr. Mater., 2013, 68: 114
[12] Liu Y, Bufford D, Wang H, et al.Mechanical properties of highly textured Cu/Ni multilayers[J]. Acta Mater., 2011, 59: 1924
[13] Chen S D, Zhou Y K, Soh A K.Molecular dynamics simulations of mechanical properties for Cu(001)/Ni(001) twist boundaries[J]. Comput. Mater. Sci., 2012, 61: 239
[14] Yuan F P, Wu X L.Layer thickness dependent tensile deformation mechanisms insub-10 nm multilayer nanowires[J]. J. Appl. Phys., 2012, 111: 124313
[15] Wang J, Misra A, Hoagland R G, et al.Slip transmission across fcc/bcc interfaces with varying interface shear strengths[J]. Acta Mater., 2012, 60: 1503
[16] Zhang R F, Wang J, Beyerlein I J, et al.Atomic-scale study of nucleation of dislocations from fcc-bcc interfaces[J]. Acta Mater., 2012, 60: 2855
[17] McKeown J, Misra A, Kung H, et al. Microstructures and strength of nanoscale Cu-Ag multilayers[J]. Scr. Mater., 2002, 46: 593
[18] Kang B C, Kim H Y, Kwon O Y, et al.Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers[J]. Scr. Mater., 2007, 57: 703
[19] Carpenter J S, Vogel S C, Ledonne J E, et al.Bulk texture evolution of Cu-Nb nanolamellar composites during accumulative roll bonding[J]. Acta Mater., 2012, 60: 1576
[20] Niu J J, Zhang J Y, Liu G, et al.Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X=Cr, Zr) multilayer films[J]. Acta Mater., 2012, 60: 3677
[21] Kim Y, Budiman A S, Baldwin J K, et al.Microcompression study of Al-Nb nanoscale multilayers[J]. J. Mater. Res., 2012, 27: 592
[22] Gupta M, Amir S M, Gupta A, et al.Surfactant mediated growth of Ti/Ni multilayers[J]. Appl. Phys. Lett., 2011, 98: 101912
[23] Zhang J Y, Zhang X, Niu J J, et al.Length scale dependent mechanical/electrical properties of Cu/X (X=Cr, Nb) nanostructured metallic multilayers[J]. Acta Metall. Sin., 2011, 47: 1348(张金钰, 张欣, 牛佳佳等. Cu/X (X=Cr, Nb)纳米多层膜力/电学性能的尺度依赖性[J]. 金属学报, 2011, 47: 1348)
[24] Hosseini M, Pardis N, Manesh H D, et al.Structural characteristics of Cu/Ti bimetal composite produced by accumulative roll-bonding (ARB)[J]. Mater. Des., 2017, 113: 128
[25] Hosseini M, Manesh H D, Eizadjou M.Development of high-strength, good-conductivity Cu/Ti bulk nano-layered composites by a combined roll-bonding process[J]. J. Alloys Compd., 2017, 701: 127
[26] Jia N, Roters F, Eisenlohr P, et al.Simulation of shear banding in heterophase co-deformation: Example of plane strain compressed Cu-Ag and Cu-Nb metal matrix composites[J]. Acta Mater., 2013, 61: 4591
[27] Jia N, Raabe D, Zhao X.Crystal plasticity modeling of size effects in rolled multilayered Cu-Nb composites[J]. Acta Mater., 2016, 111: 116
[28] Zhao Y H, Bingert J F, Liao X Z, et al.Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper[J]. Adv. Mater., 2006, 18: 2949
[29] Wang Y N, Huang J C.Texture analysis in hexagonal materials[J]. Mater. Chem. Phys., 2003, 81: 11
[30] Wen Y H, Zhu Z D, Zhu R Z.Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects[J]. Comput. Mater. Sci., 2008, 41: 553
[31] Kim Y M, Lee B J. A semi-empirical interatomic potential for the Cu-Ti binary system [J]. Mater. Sci. Eng., 2007, A449-451: 733
[32] Stukowski A.Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool[J]. Modell. Simul. Mater. Sci. Eng., 2009, 18: 015012
[33] Stukowski A, Albe K.Extracting dislocations and non-dislocation crystal defects from atomistic simulation data[J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 085001
[34] Zhou H J, Xian Y H, Wu R N, et al.Formation of gold composite nanowires using cold welding: A structure-based molecular dynamics simulation[J]. CrystEngComm, 2017, 19: 6347
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[3] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[4] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[5] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[6] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[7] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[8] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[9] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[10] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[11] 陈伟, 章环, 牟娟, 朱正旺, 张海峰, 王沿东. 显微组织和应变速率对TC4合金动态力学性能和绝热剪切带的影响[J]. 金属学报, 2022, 58(10): 1271-1280.
[12] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[13] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[14] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[15] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.