Please wait a minute...
金属学报  2018, Vol. 54 Issue (8): 1171-1178    DOI: 10.11900/0412.1961.2017.00530
  本期目录 | 过刊浏览 |
连续玄武岩纤维增强铝基层状复合材料的制备与力学特性
丁浩1, 崔喜平1,2(), 许长寿1, 李爱滨1, 耿林1, 范国华1, 陈俊锋3, 孟松鹤2
1 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
2 哈尔滨工业大学航天学院 哈尔滨 150001
3 福州大学材料学院 福州 350116
Fabrication and Mechanical Characteristics of Multi-Laminated Aluminum Matrix Composites Reinforcedby Continuous Basalt Fibers
Hao DING1, Xiping CUI1,2(), Changshou XU1, Aibin LI1, Lin GENG1, Guohua FAN1, Junfeng CHEN3, Songhe MENG2
1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2 School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
3 School of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
引用本文:

丁浩, 崔喜平, 许长寿, 李爱滨, 耿林, 范国华, 陈俊锋, 孟松鹤. 连续玄武岩纤维增强铝基层状复合材料的制备与力学特性[J]. 金属学报, 2018, 54(8): 1171-1178.
Hao DING, Xiping CUI, Changshou XU, Aibin LI, Lin GENG, Guohua FAN, Junfeng CHEN, Songhe MENG. Fabrication and Mechanical Characteristics of Multi-Laminated Aluminum Matrix Composites Reinforcedby Continuous Basalt Fibers[J]. Acta Metall Sin, 2018, 54(8): 1171-1178.

全文: PDF(7595 KB)   HTML
摘要: 

将连续玄武岩纤维(continuous basalt fiber,CBF)二维编织布与Al-12Si合金箔交替叠层堆垛成三明治结构,再利用真空压力浸渗技术成功制备出高体积分数(65%)的连续玄武岩纤维增强铝基(CBF/Al)层状复合材料。研究了浸渗工艺对复合材料微观组织演变的影响规律,阐明了CBF/Al复合材料的层状结构形成机理,并评价了其力学性能。研究表明:在温度为660 ℃、压力为10 MPa条件下浸渗10 min可以获得全致密的CBF/Al复合材料,其微观组织呈现独特的层状结构,即玄武岩纤维在铝合金基体中呈现垂直交叉层状分布特征,玄武岩纤维与铝合金基体未发生明显的化学反应,且由于玄武岩纤维与铝合金基体之间发生了元素(如Al、Si等)互扩散而形成了良好的冶金结合界面。纤维非理想排布方式而导致的有效承载能力下降以及高温下玄武岩纤维断裂强度降低是CBF/Al层状复合材料未达到理想力学性能的关键因素。

关键词 连续玄武岩纤维铝基复合材料层状结构界面弯曲强度    
Abstract

Continuous basalt fiber (CBF) is a new type of performance outstanding inorganic nonmetallic material. In comparison with carbon fibers, basalt fibers exhibit greater failure strain as well as better impact and fire resistance with less poisonous fumes and 50% cost reduction. It is also known that basalt fibers display higher mechanical properties, better chemical stability and superior thermal and electrical insulation as compared with glass fibers. Basalt fiber has been widely used as a reinforcing composite material for construction industry and for preparation of polymer matrix composites. As high-performance low-cost reinforcements, basalt fibers should have a great potential for strengthening metal matrix composites (MMCs) and reducing their preparation cost. However, so far, few reports focused on the investigation on metal matrix composites reinforced by continuous basalt fibers, especially for lack of feasible fabrication technologies. Thus, in the present work, two-dimensional continuous basalt fiber cloth and Al-12Si alloys foils were selected as raw materials and alternately stacked to obtain a sandwiched structure. Subsequently, vacuum pressure infiltration was utilized to fabricate aluminum matrix composites reinforced by continuous basalt fibers (CBF/Al) with volume fraction of 65% successfully. Influence of infiltration parameters on microstructure evolution of resulting aluminum matrix composites was investigated and formation mechanism of multi-layered structure of CBF/Al composite was clarified. Moreover, mechanical properties of the multi-layered CBF/Al composite were evaluated. The results showed that when the infiltration parameters were 660 ℃, 10 MPa and 10 min, fully dense CBF/Al composite could be achieved and the novel composite displayed a unique multi-layered structure, namely continuous basalt fibers in forms of cruciform crossing distributed within aluminum alloys matrix. It is noteworthy that no obvious chemical reaction happened between continuous basalt fibers and Al-12Si alloys, and sound metallurgical bonding interface between them was obtained due to the interdiffusion of Al and Si elements. Unfortunately, mechanical properties of multi-layered CBF/Al composite did not reach a desired level, which was attributed to (i) decreasing of effective load-carrying capacity due to the imperfect distribution manner of continuous basalt fibers and (ii) deteriorating of intrinsic mechanical properties at high temperature.

Key wordscontinuous basalt fiber    aluminum matrix composite    multi-layered structure    interface    bending strength
收稿日期: 2017-12-11     
ZTFLH:  TB331  
基金资助:国家自然科学基金项目Nos.51771064、51401068和51501040
作者简介:

作者简介 丁 浩,男,1995年生,硕士生

图1  压力浸渗法制备连续玄武岩纤维增强铝基(CBF/Al)层状复合材料示意图
图2  玄武岩纤维二维编织布微观形貌
图3  浸渗温度对CBF/Al复合材料微观组织的影响
图4  660 ℃时浸渗制备的CBF/Al层状复合材料的XRD谱
图5  CBF/Al层状复合材料的界面形貌及界面区域元素面分布
图6  CBF/Al层状复合材料微观组织的TEM像与界面结合特征
图7  CBF/Al层状复合材料断口形貌的SEM像
图8  热处理温度对玄武岩纤维直径与断裂强度的影响
[1] Cao H L, Lang H J, Meng S H.Experimental research on the basic structure and properties of the continuous basalt fiber[J]. Hi-Tech Fiber Appl., 2007, 32(5): 8(曹海琳, 郎海军, 孟松鹤. 连续玄武岩纤维结构与性能试验研究[J]. 高科技纤维与应用, 2007, 32(5): 8)
[2] Asadi A, Baaij F, Mainka H, et al.Basalt fibers as a sustainable and cost-effective alternative to glass fibers in sheet molding compound (SMC)[J]. Composites, 2017, 123B: 210
[3] Kuzmin K L, Gutnikov S L, Zhukovskaya E S, et al.Basaltic glass fibers with advanced mechanical properties[J]. J. Non-Cryst. Solids, 2017, 476: 144
[4] Inman M, Thorhallsson E R, Azrague K.A mechanical and environmental assessment and comparison of basalt fibre reinforced polymer (BFRP) rebar and steel rebar in concrete beams[J]. Energy Proc., 2017, 111: 31
[5] Fiore V, Scalici T, Di Bella G, et al.A review on basalt fibre and its composites[J]. Composites, 2015, 74B: 74
[6] Dhand V, Mittal G, Rhee K Y, et al.A short review on basalt fiber reinforced polymer composites[J]. Composites, 2015, 73B: 166
[7] Shen D J, Yang Q, Jiao Y, et al.Experimental investigations on reinforced concrete shear walls strengthened with basalt fiber-reinforced polymers under cyclic load[J]. Constr. Build Mater., 2017, 136: 217
[8] Li R, Gu Y Z, Zhang G L, et al.Radiation shielding property of structural polymer composite: Continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide[J]. Compos. Sci. Technol., 2017, 143: 67
[9] Korol E, Tejchman J, Mróz Z.Experimental and numerical assessment of size effect in geometrically similar slender concrete beams with basalt reinforcement[J]. Eng. Struct., 2017, 141: 272
[10] Bhat T, Chevali V, Liu X, et al.Fire structural resistance of basalt fibre composite[J]. Composites, 2015, 71A: 107
[11] Akhlaghi F, Eslami-Farsani R, Sabet S M M. Synthesis and characteristics of continuous basalt fiber reinforced aluminum matrix composites[J]. J. Compos. Mater., 2013, 47: 3379
[12] Xie Y L, Wang M L, Ma N H, et al.Interface reaction and property of basalt fiber reinforced Al-based composites[J]. Foundry Technol., 2013, 34: 805(谢雨凌, 汪明亮, 马乃恒等. 玄武岩纤维增强铝基复合材料的界面反应及力学性能分析[J]. 铸造技术, 2013, 34: 805)
[13] Tjong S C, Ma Z Y.Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Mater. Sci. Eng., 2000, R29: 50
[14] Dhanashekar M, Kumar S V S. Squeeze casting of aluminium metal matrix composites-an overview[J]. Proc. Eng., 2014; 97: 412
[15] Teng F, Yu K, Luo J, et al.Microstructures and properties of Al-50%SiC composites for electronic packaging applications[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 2647
[16] Pucci M F, Seghini M C, Liotier P J, et al.Surface characterisation and wetting properties of single basalt fibres[J]. Composites, 2017, 109B: 72
[17] Iorio M, Santarelli M L, González-Gaitano G, et al.Surface modification and characterization of basalt fibers as potential reinforcement of concretes[J]. Appl. Sur. Sci., 2018, 427: 1248
[18] Li F Z, Li G C, Wang H M, et al.Research on properties on high temperature resistance of basalt fiber yarn[J]. J. Funct. Mater., 2013, 46: 3063(李福洲, 李贵超, 王浩明等. 玄武岩纤维纱线的耐高温性能研究 [J]. 功能材料, 2013, 46: 3063)
[19] Sarasini F, Tirillò J, Seghini M C.Influence of thermal conditioning on tensile behaviour of single basalt fibres[J]. Composites, 2018, 132B: 77
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[4] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[5] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[6] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[7] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[8] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[9] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[10] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[11] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[12] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[13] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[14] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[15] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.