Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 557-565    DOI: 10.11900/0412.1961.2017.00147
  本期目录 | 过刊浏览 |
高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制
李旭东, 毛萍莉(), 刘晏宇, 刘正, 王志, 王峰
沈阳工业大学材料科学与工程学院 沈阳 110870
Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates
Xudong LI, Pingli MAO(), Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. Acta Metall Sin, 2018, 54(4): 557-565.

全文: PDF(5031 KB)   HTML
摘要: 

采用分离式Hopkinson压杆装置(SHPB)测试了挤压态Mg-3Zn-1Y稀土镁合金在应变速率分别为1000、1500和2200 s-1时的动态真应力-真应变曲线;采用OM和SEM等分析了其高速变形过程中的组织演变规律及断口形貌,从微观变形机制的角度探讨了具有强烈初始基面织构的挤压态镁合金产生各向异性的原因。分析结果表明:在高速变形条件下,由于加载方向不同,挤压态Mg-3Zn-1Y镁合金的压缩行为表现出较明显的各向异性。挤压态Mg-3Zn-1Y镁合金宏观上的各向异性是由于不同的微观变形机制所引起的。沿挤压方向压缩时,当应变较小时,变形机制主要为拉伸孪晶,当应变增加时,会有柱面滑移参与变形,当应变达到一定值时滑移成为其主要的变形方式。而沿挤压横向压缩时,随着应变速率增加,变形方式由压缩孪生为主变为基面滑移和二次锥面滑移协同变形。

关键词 镁合金各向异性高应变速率变形机制    
Abstract

As a very important design principle, the dynamic properties of materials attracted extensive attention in resent years and a bunch of works have been done concerning with the materials deformation behaviors under high strain rates. However, the dynamic behaviors of magnesium alloys are not through understood, especially the rare earth based magnesium alloys. In order to investigate the dynamic and anisotropic behavior under high strain rates deformation of as-extruded Mg-3Zn-1Y magnesium alloy, the split Hopkinson pressure bar (SHPB) apparatus was used to testing the true stress-true strain curves under the high strain rates of 1000, 1500 and 2200 s-1 of as-extruded Mg-3Zn-1Y magnesium alloy. The OM and SEM were used to analysis the micorstructure evolution and fracture surface morphology of the alloy. The true reason behind the anisotropic phenomenon was revealed based on the deformation mechanism of highly basal-textured magnesium alloy. The results demonstrate that the as-extruded Mg-3Zn-1Y magnesium alloy exhibits pronounced anisotropy during compression according to the loading direction. The anisotropy of the as-extruded Mg-3Zn-1Y magnesium alloy are arised from the variety of the deformation mechanisms. When the loading direction is along extrusion direction, the predominant deformation mode changes from extension twinning at a lower strain to prismatic slip at a higher strain. While compressed along extrusion radial direction (ERD), the predominant deformation mode changes from contraction twinning to a coordination of basal and second order pyramidal slip with the increasing of strain.

Key wordsmagnesium alloy    anisotropy    high strain rate    deformation mechanism
收稿日期: 2017-04-25     
ZTFLH:  TG146.2  
基金资助:沈阳市科技计划项目No.17-9-6-00
作者简介:

作者简介 李旭东,男,1992年生,硕士生

图1  试样切割方案示意图
图2  挤压态Mg-3Zn-1Y镁合金组织的OM像
图3  挤压态Mg-3Zn-1Y镁合金高速冲击压缩时的真应力-真应变曲线
图4  挤压态Mg-3Zn-1Y镁合金在ED和ERD加载方向下的屈服强度与应变速率的关系
图5  挤压态Mg-3Zn-1Y镁合金在ED和ERD加载方向下的真应力-真应变曲线
图6  挤压态Mg-3Zn-1Y镁合金在ED和ERD加载方向下的应变硬化率-真应变曲线
图7  挤压态Mg-3Zn-1Y镁合金在ED和ERD加载方向下的冲击吸收功-应变速率关系
图8  挤压态Mg-3Zn-1Y镁合金在不同应变速率下沿ED方向压缩后的变形组织的OM像
图9  挤压态Mg-3Zn-1Y镁合金在不同应变速率下沿ERD方向压缩后的变形组织的OM像
图10  挤压态Mg-3Zn-1Y镁合金的XRD谱
图11  挤压态Mg-3Zn-1Y镁合金高速冲击压缩加载方向与晶粒c轴的相对关系示意图
图12  不同加载方向下挤压态Mg-3Zn-1Y镁合金的压缩断口形貌
[1] Mordike B L, Ebert T.Magnesium: Properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
[2] Aghion E, Bronfin B. Magnesium alloys development towards the 21st century [J]. Mater. Sci. Forum, 2000, 350-351: 19
[3] Van Fleteren R.Magnesium for automotive applications[J]. Adv. Mater. Process., 1996, 149(5): 33
[4] Kleiner S, Uggowitzer P J.Mechanical anisotropy of extruded Mg-6% Al-1% Zn alloy[J]. Mater. Sci. Eng., 2004, A379: 258
[5] Bohlen J, Nürnberg M R, Senn J W, et al.The texture and anisotropy of magnesium-zinc-rare earth alloy sheets[J]. Acta Mater., 2007, 55: 2101
[6] Yin S M, Wang C H, Diao Y D, et al.Influence of grain size and texture on the yield asymmetry of Mg-3Al-1Zn alloy[J]. J. Mater. Sci. Technol., 2011, 27: 29
[7] Ball E A, Prangnell P B.Tensile-compressive yield asymmetries in high strength wrought magnesium alloys[J]. Scr. Metall. Mater., 1994, 31: 111
[8] Yin D L, Wang J T, Liu J Q, et al.On tension-compression yield asymmetry in an extruded Mg-3Al-1Zn alloy[J]. J. Alloys Compd., 2009, 478: 789
[9] Mao P L, Liu Z, Wang C Y, et al.Deformation microstructure of AZ31B magnesium alloy under high strain rate compression[J]. Chin. J. Nonferrous Met., 2009, 19: 816(毛萍莉, 刘正, 王长义 等. 高应变速率下AZ31B镁合金的压缩变形组织 [J]. 中国有色金属学报, 2009, 19: 816)
[10] Watanabe H, Ishikawa K.Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy[J]. Mater. Sci. Eng., 2009, A523: 304
[11] Agnew S R, Duygulu ?.Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J]. Int. J. Plast., 2005, 21: 1161
[12] Nave M D, Barnett M R.Microstructures and textures of pure magnesium deformed in plane-strain compression[J]. Scr. Mater., 2004, 51: 881
[13] Yang Y B, Wang F C, Tan C W, et al.Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression[J]. Trans. Nonferrous Met. Soc. China, 2008, 18: 1043
[14] Barnett M R, Keshavarz Z, Beer A G, et al.Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Mater., 2004, 52: 5093
[15] Barnett M R.Twinning and the ductility of magnesium alloys: Part II. "Contraction" twins[J]. Mater. Sci. Eng., 2007, A464: 8
[16] Wan G, Wu B L, Zhang Y D, et al.Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2010, A527: 2915
[17] Liu Z, Zhang K, Zeng X Q.Theory and Application of Mg-Based Light Alloy [M]. Beijing: China Machine Press, 2002: 32(刘正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用 [M]. 北京: 机械工业出版社, 2002: 32)
[18] Barnett M R.Twinning and the ductility of magnesium alloys: Part I: "Tension" twins[J]. Mater. Sci. Eng., 2007, A464: 1
[19] Jiang L, Jonas J J, Mishra R K, et al.Twinning and texture development in two Mg alloys subjected to loading along three different strain paths[J]. Acta Mater., 2007, 55: 3899
[20] Jiang L, Jonas J J, Luo A A, et al. Influence of {10$\bar{1}$2} extension twinning on the flow behavior of AZ31 Mg alloy [J]. Mater. Sci. Eng., 2007, A445-446: 302
[21] Brown D W, Agnew S R, Bourke M A M, et al. Internal strain and texture evolution during deformation twinning in magnesium[J]. Mater. Sci. Eng., 2005, A399: 1
[22] Gehrmann R, Frommert M M, Gottstein G.Texture effects on plastic deformation of magnesium[J]. Mater. Sci. Eng., 2005, A395: 338
[23] Wang M Y, Xin R L, Wang B S, et al.Effect of initial texture on dynamic recrystallization of AZ31 Mg alloy during hot rolling[J]. Mater. Sci. Eng., 2010, A528: 2941
[24] Christian J W, Mahajan S.Deformation twinning[J]. Prog. Mater. Sci., 1995, 39: 1
[25] Luo J R, Liu Q, Liu W.Influence of rolling temperature on the {1010$\bar{1}$1}-{10$\bar{1}$21}-{10$\bar{1}$1}-{10$\bar{1}$2} twinning in rolled AZ31 magnesium alloy sheets[J]. Acta Metall. Sin., 2012, 48: 717(罗晋如, 刘庆, 刘伟. 轧制温度对AZ31镁合金轧制板材中的{1010$\bar{1}$1}-{10$\bar{1}$21}-{1010$\bar{1}$1}-{10$\bar{1}$22}双孪生行为的影响 [J]. 金属学报, 2012, 48: 717)
[26] Chen Z H, Xia W J, Cheng Y Q, et al.Texture and anisotropy in magnesium alloys[J]. Chin. J. Nonferrous Met., 2005, 15: 1(陈振华, 夏伟军, 程永奇 等. 镁合金织构与各向异性 [J]. 中国有色金属学报, 2005, 15: 1)
[27] Bingert J F, Mason T A, Kaschner G C, et al.Deformation twinning in polycrystalline Zr: Insights from electron backscattered diffraction characterization[J]. Metall. Mater. Trans., 2002, 33A: 955
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[3] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[6] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[9] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[10] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[11] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[12] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[13] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[14] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[15] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.