|
|
振动过程的数值模拟在金属凝固中应用的研究进展 |
吴士平( ), 王汝佳, 陈伟, 戴贵鑫 |
哈尔滨工业大学材料科学与工程学院 哈尔滨 150001 |
|
Progress on Numerical Simulation of Vibration in the Metal Solidification |
Shiping WU( ), Rujia WANG, Wei CHEN, Guixin DAI |
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China |
引用本文:
吴士平, 王汝佳, 陈伟, 戴贵鑫. 振动过程的数值模拟在金属凝固中应用的研究进展[J]. 金属学报, 2018, 54(2): 247-264.
Shiping WU,
Rujia WANG,
Wei CHEN,
Guixin DAI.
Progress on Numerical Simulation of Vibration in the Metal Solidification[J]. Acta Metall Sin, 2018, 54(2): 247-264.
[1] | Shukla D P, Goel D P, Pandey P C.Influence of vibration during solidification on ingot soundness and mechanical properties of aluminum alloy test castings[J]. All-India Semin. Alum., 1978, 1: 26 | [2] | Garlick R G, Wallace J F.Grain refinement of solidifying metals by vibration[J]. Trans. Am. Foundrymen's Soc., 1959, 67: 366 | [3] | Burbure R R, Hareesha I, Murthy K S S. Influence of low frequency vibrations on aluminium eutectics[J]. Br. Foundryman, 1979, 72: 34 | [4] | Pillai N R.Effect of low frequency mechanical vibration on structure of modified aluminum-silicon eutectic[J]. Metall. Trans., 1972, 3: 1313 | [5] | Campbell J.Effects of vibration during solidification[J]. Int. Met. Rev., 1981, 26: 71 | [6] | Seal A K, Banerjee M K.Effect of vibration on the solidification of grey cast iron[J]. Indian Foundry J., 1984, 30: 15 | [7] | Richards R S, Rostoker W.The influence of vibration on the solidification of an aluminum alloy[J]. Trans. ASM, 1956, 48: 884 | [8] | Southgate P D.Action of vibration on solidifying aluminum alloys[J]. Trans. Am. Inst. Min. Metall. Eng., 1957, 209: 514 | [9] | Batyshev A I, Kuskov P K.Vibration treatment of cast aluminum blanks[J]. Sov. Cast. Technol., 1989, 12: 24 | [10] | Puskar A.The use of high-intensity ultrasonics[J]. Mater. Sci. Monogr., 1982, 13: 32 | [11] | Hiedemann E A.Metallurgical effects of ultrasonic waves[J]. J. Acoust. Soc. Am., 1954, 26: 831 | [12] | Southin R T.The influence of low-frequency vibration on the nucleation of solidifying metals[J]. J. Inst. Met., 1966, 94: 401 | [13] | Balandin G F, Yu Y P.Effect of vibration on the crystallization process in aluminium casting[J]. Russ. Cast. Prod., 1963: 221 | [14] | Fisher T P.Effects of vibrational energy on the solidification of aluminium alloys[J]. Br. Foundryman, 1973, 66: 71 | [15] | Kocatepe K, Burdett C F.Effect of low frequency vibration on macro and micro structures of LM6 alloys[J]. J. Mater. Sci., 2000, 35: 3327 | [16] | Wang H X, Zhang G P, Xu C X, et al.Effect of mechanical vibration on grain refinement and solidification shrinkage of aluminum[J]. Res. Stud. Foundry Equip., 2007, (1): 28(王红霞, 张国平, 许春香等. 机械振动对纯Al晶粒细化及凝固收缩的影响[J]. 铸造设备研究, 2007, (1): 28) | [17] | Wang C J, Han D D, Chen L, et al.Application and development of vibration technology in metal casting molding[J]. J. Hebei Univ. Sci. Technol., 2014, 35: 229(王成军, 韩董董, 陈蕾等. 振动技术在金属材料铸造成形中的应用与发展[J]. 河北科技大学学报, 2014, 35: 229) | [18] | Anderson J D Jr. Computational Fluid Dynamics[M]. New York: McGraw-Hill Education, 1995: 49 | [19] | Niu B H, Sun C Y.Semi-spatial Media and Seismic Wave Propagation: Theory and Application of Seismic Wave Propagation [M]. Beijing: Petroleum Industry Press, 2002: 39(牛滨华, 孙春岩. 半空间介质与地震波传播: 地震波传播理论与应用 [M]. 北京: 石油工业出版社, 2002: 39) | [20] | Carcione J M.Seismic modeling in viscoelastic media[J]. Geophysics, 1993, 58: 110 | [21] | Biot M A.Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. J. Acoust. Soc. Am., 1956, 28: 168 | [22] | Li Q C, Chen K Y, Zeng S Y.Influence of rare earth additions on rheological behavior of Al-5Cu alloy in solid-liquid coexistence zone[J]. Mater. Sci. Technol., 1991, 7: 770 | [23] | Ludwig O, Drezet J M, Ménésès P, et al.Rheological behavior of a commercial AA5182 aluminum alloy during solidification[J]. Mater. Sci. Eng., 2005, A413: 174 | [24] | Shao Z W, Le Q C, Cui J Z, et al.Numerical simulation of standing waves for ultrasonic purification of magnesium alloy melt[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: S382 | [25] | Wang R J, Wu S P, Chen W.Numerical simulation of mechanical wave propagation during solidification of ZL205A alloy [A]. 8th International Federation of Physical and Numerical Simulation of Materials Processing [C]. Seattle: Purdue University Press, 2016: 28 | [26] | Gao S L, Zhai Q J, Qi F P, et al.Application and development of high-intensity ultrasonic in solidification process of metals[J]. Mater. Rev., 2002, 16: 5(高守雷, 翟启杰, 戚飞鹏等. 超声波在金属凝固中的应用与发展[J]. 材料导报, 2002, 16: 5) | [27] | Parrini L.New technology for the design of advanced ultrasonic transducers for high-power applications[J]. Ultrasonics, 2004, 41: 261 | [28] | Gu Y J, Yang K, Zhu P.Finite element analysis on power ultrasonic vibration system[J]. J. North Chin. Electr. Power Univ., 1999, 26: 78(顾煜炯, 杨昆, 朱萍. 功率超声振动系统的有限元分析[J]. 华北电力大学学报, 1999, 26: 78) | [29] | Liang Z F, Zhou G P, Zhang Y H.Application of ANSYS in power ultrasound[J]. Mach. Electr., 2005, (8): 10(梁召峰, 周光平, 张亦慧. ANSYS在功率超声领域中的应用[J]. 机械与电子, 2005, (8): 10) | [30] | Deng L N, Li X Q, Wu H, et al.Design and research on horn applied in aluminum alloy ultrasonic casting[J]. Hot Work. Technol., 2010, 39(17): 68(邓丽娜, 李晓谦, 吴昊等. 铝合金超声波铸造用变幅杆的设计与研究[J]. 热加工工艺, 2010, 39(17): 68) | [31] | Zhang Y.Apparatus design of the combined power ultrasonic and applied pressure and its effect on microstructure of the Al-Cu alloy [D]. Guangzhou: South China University of Technology, 2016(张杨. 超声—压力耦合的装置设计及其对Al-Cu合金微观组织的影响 [D]. 广州: 华南理工大学, 2016) | [32] | Liang G, Chen S, Zhou Y J, et al.Numerical simulation and experimental study of an ultrasonic waveguide for ultrasonic casting of 35CrMo steel[J]. J. Iron Steel Res. Int., 2016, 23: 772 | [33] | Zhu Y L, Bian F L, Wang Y L, et al.Conjugate heat transfer analysis of an ultrasonic molten metal treatment system[J]. Chin. J. Mech. Eng., 2014, 27: 986 | [34] | Rayleigh L.On the pressure developed in a liquid during the collapse of a spherical cavity[J]. London, Edinb. Dublin Philosoph. Mag. J. Sci., 1917, 34: 94 | [35] | Plesset M S.The dynamics of cavitation bubbles[J]. J. Appl. Mech., 1949, 16: 277 | [36] | Neppiras E A, Noltingk B E.Cavitation produced by ultrasonics: Theoretical conditions for the onset of cavitation[J]. Proc. Phys. Soc. London, 1951, 64B: 1032 | [37] | Keller J B, Miksis M.Bubble oscillations of large amplitude[J]. J. Acoust. Soc. Am., 1980, 68: 628 | [38] | Flynn H G.Cavitation dynamics. I. A mathematical formulation[J]. J. Acoust. Soc. Am., 1975, 57: 1379 | [39] | Liu H L, Liu D X, Wang Y, et al.Numerical research status and prospects of cavitating flow in a pump[J]. Fluid Mach., 2011, 39: 38(刘厚林, 刘东喜, 王勇等. 泵空化流数值计算研究现状及展望[J]. 流体机械, 2011, 39: 38) | [40] | Kunz R F, Boger D A, Stinebring D R, et al.A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Comput. Fluids, 2000, 29: 849 | [41] | Singhal A K, Athavale M M, Li H, et al.Mathematical basis and validation of the full cavitation model[J]. J. Fluids Eng., 2002, 124: 617 | [42] | Merkle C L, Feng J, Buelow P E O. Computational modeling of dynamics of sheet cavitation [A]. 3rd International Symposium on Cavitation[C]. France: Grenoble, 1998, 2: 47 | [43] | Senocak I, Shyy W.A pressure-based method for turbulent cavitating flow computations[J]. J. Comput. Phys., 2002, 176: 363 | [44] | Saito Y, Nakamori I, Ikohagi T. Numerical analysis of unsteady vaporous cavitating flow around a hydrofoil [A]. 5th International Symposium on Cavitation [C]. Osaka, 2003, CD-R: Cav03-OS-1-006 | [45] | Nastac L.Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J]. Acta Mater., 1999, 47: 4253 | [46] | Nastac L.Mathematical modeling of the solidification structure evolution in the presence of ultrasonic stirring[J]. Metall. Mater. Trans., 2011, 42B: 1297 | [47] | Jian X, Xu H, Meek T T, et al.Effect of power ultrasound on solidification of aluminum A356 alloy[J]. Mater. Lett., 2005, 59: 190 | [48] | Nastac L.Multiscale modeling of the solidification microstructure evolution in the presence of ultrasonic stirring [A]. IOP Conference Series: Materials Science and Engineering [C]. Philadelphia: IOP Publishing, 2012, 33: 012079 | [49] | Shao Z W, Le Q C, Zhang Z Q, et al.Numerical simulation of acoustic pressure field for ultrasonic grain refinement of AZ80 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 2476 | [50] | Shao G J, Hu S C, Xia C X, et al.Numerical simulation and experimental verification on effects of ultrasonic treatment on solidification structure of 7050 aluminum alloy[J]. Spec. Cast. Nonferrous Alloy, 2011, 31: 119(邵高建, 胡仕成, 夏晨希等. 超声对7050铝合金凝固组织影响的数值模拟[J]. 特种铸造及有色合金, 2011, 31: 119) | [51] | Kong W, Cang D Q.Effects of ultrasound on the flow field in molten steel and solidification structure[J]. Simulation, 2012, 88: 694 | [52] | Ishiwata Y, Komarov S, Takeda Y.Investigation of acoustic streaming in aluminum melts exposed to high-intensity ultrasonic irradiation [A]. 13th International Conference on Aluminum Alloy[C] Pittsburgh: Springer, 2012: 183 | [53] | Huang H J, Xu Y F, Da S, et al.Effect of ultrasonic melt treatment on structure refinement of solidified high purity aluminum[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2414 | [54] | Haghayeghi R, Ezzatneshan E, Bahai H.Retracted Article: Grain refinement of AA5754 aluminum alloy by ultrasonic cavitation: Experimental study and numerical simulation[J]. Met. Mater. Int., 2015, 21: 109 | [55] | Zhai W, Wang B J, Liu H M, et al.Three orthogonal ultrasounds fabricate uniform ternary Al-Sn-Cu immiscible alloy[J]. Sci. Rep., 2016, 6: 36718 | [56] | Zhai W, Liu H M, Hong Z Y, et al.A numerical simulation of acoustic field within liquids subject to three orthogonal ultrasounds[J]. Ultrason. Sonochem., 2017, 34: 130 | [57] | Wang G, Croaker P, Dargusch M, et al.Simulation of convective flow and thermal conditions during ultrasonic treatment of an Al-2Cu alloy[J]. Comput. Mater. Sci., 2017, 134: 116 | [58] | Chen X R, Le Q C, Wang X B, et al.Variable-frequency ultrasonic treatment on microstructure and mechanical properties of ZK60 alloy during large diameter semi-continuous casting[J]. Metals, 2017, 7: 173 | [59] | Shao Z W, Le Q C, Zhang Z Q, et al.Effect of ultrasonic power on grain refinement and purification processing of AZ80 alloy by ultrasonic treatment[J]. Met. Mater. Int., 2012, 18: 209 | [60] | Yasuda K, Umemura S I, Takeda K.Particle separation using acoustic radiation force and elecrostatic force[J]. J. Acoust. Soc. Am., 1996, 99: 1965 | [61] | Weiser M A H, Apfel R E, Neppiras E A. Interparticle forces on red cells in a standing wave field[J]. Acta Acust. United Acust., 1984, 56: 114 | [62] | Schram C J.Manipulation of particles in an acoustic field[J]. Adv. Sonochem., 1991, 2: 293 | [63] | Yan H, Huang W X. Numerical simulation on thixo-forging of magnesium matrix composite [J]. Adv. Mater. Res., 2011, 189-193: 2535 | [64] | Huang W X, Yan H, Huang B H.Numerical simulation of rheoforming of Al2Y/AZ91 magnesium matrix composites[J]. Rare Met., 2016, 40: 776(黄文先, 闫洪, 黄碧浩. Al2Y/AZ91镁基复合材料流变成形数值模拟[J]. 稀有金属, 2016, 40: 776) | [65] | Rao Y S, Yan H, Wan J.Rheological model of semisolid Mg2Si/AM60 composites prepared by ultrasonic vibration treatment[J]. Rare Met., 2015, doi: 10.1007/s12598-015-0619-x | [66] | Shin S S, Kim W C, Kim K H, et al.Improvement of riser efficiency using high-intensity ultrasonic treatment in A356 alloy[J]. Mater. Trans., 2015, 56: 1605 | [67] | Yang M S, Bao Y, Liu H Z.Experimental study on compaction properties of dry sand in expendable pattern casting[J]. Foundry Technol., 2000, (2): 42(杨卯生, 宝音, 刘宏志. 消失模铸造干砂紧实特性的试验研究[J]. 铸造技术, 2000, (2): 42) | [68] | Li L X, Li Z M, Tan J B, et al.Properties of sand filling and compaction in pattern cavity of horizontal varied section on EPC[J]. Foundry, 2003, 52: 412(李立新, 李增民, 谭建波等. 消失模铸造水平变截面型腔干砂的充填紧实特性[J]. 铸造, 2003, 52: 412) | [69] | Martin C L, Bouvard D, Shima S.Study of particle rearrangement during powder compaction by the discrete element method[J]. J. Mech. Phys. Solids., 2003, 51: 667 | [70] | He T, Wang C J, Zhang D S.Sand colony motion characteristics during vibration moulding process for epc based on EDEM[J]. Spec. Cast. Nonferrous Alloy, 2013, 33: 542(何涛, 王成军, 张东速. 基于EDEM的EPC干砂造型中的型砂运动特性[J]. 特种铸造及有色合金, 2013, 33: 542) | [71] | Wang C J, He T, Han D D, et al.Simulation research on rear supporting legs of entry-driving machine's vibration model based on EDEM[J]. J. Anhui Polyt. Univ., 2014, 29(1): 44(王成军, 何涛, 韩董董等. 基于EDEM的掘进机后支撑腿振动造型模拟研究[J]. 安徽工程大学学报, 2014, 29(1): 44) | [72] | Zhang X J, Wu Z M, Zhang F.Simulation of discrete element method for vibration type reclamation of casting used sand[J]. Hot Work. Technol., 2013, 42(13): 44(张希俊, 武智猛, 张方. 铸造旧砂振动再生的离散元法模拟[J]. 热加工工艺, 2013, 42(13): 44) | [73] | Zhao J H, Ma Q, Jin T, et al.Experimental investigation of the effect of mechanical vibration on the filling ability of A356 aluminum alloy[J]. J. Funct. Mater., 2014, 45: 15129(赵建华, 马强, 金通等. 机械振动对A356合金充型能力影响的研究[J]. 功能材料, 2014, 45: 15129) | [74] | Zhao Z, Fan Z T, Cheng P, et al.Influence of mechanical vibration on the filling capacity of A356 and AZ91D in lost foam casting[J]. J. Huazhong Univ. Sci. Technol.(Nat. Sci. Ed.), 2009, 37: 82(赵忠, 樊自田, 成平等. 机械振动对A356和AZ91D消失模充型的影响[J]. 华中科技大学学报: 自然科学版, 2009, 37: 82) | [75] | Zhao J H, Hou Z, Wang Y J.Effect of mechanical vibration on filling ablity of AZ91 magnesium alloy[J]. Mater. Sci. Technol., 2013, 21: 69(赵建华, 侯钊, 王亚军. 机械振动对AZ91镁合金充型能力的影响[J]. 材料科学与工艺, 2013, 21: 69) | [76] | Taghavi F, Saghafian H, Kharrazi Y H K. Study on the ability of mechanical vibration for the production of thixotropic microstructure in A356 aluminum alloy[J]. Mater. Des., 2009, 30: 115 | [77] | Abdul-Karem W, Green N, Al-Raheem K F. Vibration-assisted filling capability in thin wall investment casting[J]. Int. J. Adv. Manuf. Technol., 2012, 61: 873 | [78] | Jiang F, Feng J M, Wang Y J, et al.Structure optimization of castings based on vibration casting[J]. Foundry Technol., 2014, (1): 90(江帆, 冯均明, 王一军等. 基于振动铸造的铸件结构参数优化[J]. 铸造技术, 2014, (1): 90) | [79] | Jiang F, Feng J M, Wang Y J.Processing parameters optimization of vibration casting[J]. Spec. Cast. Nonferrous Alloy, 2014, 34: 580(江帆, 冯均明, 王一军. 振动铸造工艺参数优化[J]. 特种铸造及有色合金, 2014, 34: 580) | [80] | Jiang F, Feng J M, Wang Y J.Numerical simulation of liquid flow during filling process in vibration casting[J]. Spec. Cast. Nonfe-rrous Alloy, 2013, 33: 1010(江帆, 冯均明, 王一军. 振动铸造充型过程液体流动的数值模拟[J]. 特种铸造及有色合金, 2013, 33: 1010) | [81] | Wang C J, Li L, Liu Q, et al.Numerical simulation of influence of multi-dimensional vibration on molten metal filling[J]. Hot Work. Technol., 2015, 23(44): 80(王成军, 李龙, 刘琼等. 多维振动对金属液充型影响的数值模拟研究[J]. 热加工工艺, 2015, 23(44): 80) | [82] | Wang C J, Liu K, Han D D, et al.Influent of multi-dimensional vibration on casting filling process[J]. Spec. Cast. Nonferrous Alloy, 2015, 35: 696(王成军, 刘凯, 韩董董等. 多维振动对铸造充型过程的影响[J]. 特种铸造及有色合金, 2015, 35: 696) | [83] | Han Y Z, Liu A M.Research situation and development of vibration stress relief technology[J]. Foundry Technol., 2013, 4: 479(韩衍昭, 刘爱敏. 振动时效技术的研究现状与发展[J]. 铸造技术, 2013, 4: 479) | [84] | Dawson R, Moffat D G.Vibratory stress relief: A fundamental study of its effectiveness[J]. J. Eng. Mater. Technol., 1980, 102: 169 | [85] | Liu A M, Han Y Z.Study on technology parameters of vibration stress relief about castings based on finite element method[J]. Hot Work. Technol., 2012, 41(9): 65(刘爱敏, 韩衍昭. 基于有限元法的铸件振动时效工艺参数研究[J]. 热加工工艺, 2012, 41(9): 65) | [86] | Jian J K, Gao Y Y, Zou X, et al.VSR simulation and analysis of weld rectangular sheet[J]. Heat. Treat. Met., 2015, 40: 179(简健昆, 高永毅, 邹曦等. 焊接矩形薄板的振动时效模拟与分析[J]. 金属热处理, 2015, 40: 179) | [87] | Kuo J K, Huang P H, Guo M J.Removal of CrMo alloy steel components from investment casting gating system using vibration-excited fatigue failure[J]. Int. J. Adv. Manuf. Technol., 2017, 89: 101 | [88] | Lyubimov D V, Lyubimova T P, Parshakova Y N, et al.Effect of high-frequency vibrations on oriented crystallization of binary alloys[J]. J. Surf. Invest. X-Ray, Synchrotron Neutron Tech., 2009, 3: 116 | [89] | Lyubimova T P, Parshakova Y N.Numerical investigation of heat and mass transfer during vertical Bridgman crystal growth under rotational vibrations[J]. J. Cryst. Growth, 2014, 385: 82 | [90] | Liu Y C, Yu W C, Roux B, et al.Thermal-solutal flows and segregation and their control by angular vibration in vertical Bridgman crystal growth[J]. Chem. Eng. Sci., 2006, 61: 7766 | [91] | Timelli G, Della Corte E, Bonollo F.Effect of mechanical mould vibration on solidification behaviour and microstructure of A360-SiCp metal-matrix composites [A]. Materials Science Forum[C]. Zürich: Trans Tech Publications, 2011, 678: 105 | [92] | Guo Z Y.Effect of oscillation on flow field and temperature field during the twin-roll strip casting process [D]. Qinhuangdao: Yanshan University, 2016(郭志远. 双辊薄带振动铸轧数值模拟及实验研究 [D]. 秦皇岛: 燕山大学, 2016) | [93] | Monk P.Analysis of a finite element method for Maxwell's equations[J]. SIAM J. Numer. Anal., 1992, 29: 714 | [94] | Liao X L, Zhai Q J, Luo J, et al.Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J]. Acta Mater., 2007, 55: 3103 | [95] | Zhang Y, Ding H, Jiang S, et al.Numerical simulation of electro-magnetic and flow fields of TiAl melt under electric field[J]. China Foundry, 2010, 7: 241 | [96] | Zhao Z L, Wang J L, Liu L.Grain refinement by pulse electric discharging and undercooling mechanism[J]. Mater. Manuf. Process., 2011, 26: 249 | [97] | Ma J C, Na X Z.Numerical simulation of the electromagnetic field in molten metal under electric current pulse[J]. J. Iron Steel Res., 2012, 24(1): 10(马静超, 那贤昭. 脉冲电流作用下金属熔体内电磁场分布的数值模拟[J]. 钢铁研究学报, 2012, 24(1): 10) | [98] | Li X B, Lu F G, Cui H C, et al.Effect of electric current pulse on flow behaviour of Al melt in parallel electrode process[J]. Mater. Sci. Technol., 2013, 29: 226 | [99] | Li X B, Lu F G, Cui H C, et al.Migration behavior of solidification nuclei in pure Al melt under effect of electric current pulse[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 192 | [100] | R?biger D, Zhang Y H, Galindo V, et al.The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents[J]. Acta Mater., 2014, 79: 327 | [101] | R?biger D, Zhang Y, Galindo V, et al.Experimental study on directional solidification of Al-Si alloys under the influence of electric currents [A]. International Symposium on Liquid Metal Processing & Casting 2015 [C]. IOP Publishing, Leoben, Austria, 2016, 143(1): 012021 | [102] | Xu Z, Wang X, Liang D, et al.Electric current pulse induced grain refinement in pure aluminium[J]. Mater. Sci. Technol., 2015, 31: 1595 | [103] | Kolesnichenko A F, Podoltsev A D, Kucheryavaya I N.Action of pulse magnetic field on molten metal[J]. ISIJ Int., 1994, 34: 715 | [104] | Zi B T, Yao K F, Xu G M, et al.Numerical simulation of liguid alloy flow field during solidification under applied pulsed magnetic fields[J]. Acta Phys. Sin., 2003, 52: 115(訾炳涛, 姚可夫, 许光明等. 脉冲磁场下金属熔体凝固流场的数值模拟[J]. 物理学报, 2003, 52: 115) | [105] | Zhang Y J, Hua J S, Wang E G, et al.Numerical analysis of electromagnetic field in the molten steel under pulsed magnetic field[J]. Mater. Sci. Technol., 2010, 18: 639(张永杰, 华骏山, 王恩刚等. 脉冲磁场作用于钢液熔体的电磁场数值模拟[J]. 材料科学与工艺, 2010, 18: 639) | [106] | Teng Y F, Li Y J, Feng X H, et al.Effect of rectangle aspect ratio on grain refinement of superalloy K4169 under pulsed magnetic field[J]. Acta Metall. Sin., 2015, 51: 844(滕跃飞, 李应举, 冯小辉等. 脉冲磁场作用下矩形截面宽厚比对 K4169 高温合金晶粒细化的影响[J]. 金属学报, 2015, 51: 844) | [107] | Ma X P, Yang Y S, Wang B.Effect of pulsed magnetic field on superalloy melt[J]. Int. J. Heat Mass Transfer, 2009, 52: 5285 | [108] | Wang B, Yang Y S, Ma X P, et al.Simulation of electromagnetic-flow fields in Mg melt under pulsed magnetic field[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 283 | [109] | Li Y J, Teng Y F, Yang Y S.Refinement mechanism of low voltage pulsed magnetic field on solidification structure of silicon steel[J]. Met. Mater. Int., 2014, 20: 527 | [110] | Ji H M, Luo T J, Yang Y S.Numerical simulation and experimental research of low voltage pulsed magnetic field DC casting of AZ80 magnesium alloy[J]. Chin. J. Nonferrous Met., 2017, 27: 468(冀焕明, 罗天骄, 杨院生. AZ80镁合金低压脉冲磁场半连续铸造过程的数值模拟和实验研究[J]. 中国有色金属学报, 2017, 27: 468) | [111] | Li Y J, Ma X P, Yang Y S.Grain refinement of as-cast superalloy IN718 under action of low voltage pulsed magnetic field[J]. Trans. Nonferrous. Met. Soc. China, 2011, 21: 1277 | [112] | Wu L, Wang T M, Fu Y, et al.Simulation study on continuous casting process of Al/Al bimetal round billet under multi-electromagnetic [A]. IOP Conference Series: Materials Science and EngineeringI [C]. IOP Publishing, Schladming, Austria, 2012, 33(1): 012020 | [113] | Musaeva D, Ilin V, Baake E, et al.Numerical simulation of the melt flow in an induction crucible furnace driven by a Lorentz force pulsed at low frequency[J]. Magnetohydrodynamics, 2015, 51: 771 | [114] | Liu F, Zhang L Y.Numerical simulation of magnetic field and flow field distributions during pure aluminum solidification under pulse magneto-oscillation[J]. Foundry, 2012, 61: 285(刘芳, 张璐云. 脉冲磁致振荡下纯铝凝固磁场与流场分布的数值模拟[J]. 铸造, 2012, 61: 285) | [115] | Liang D, Liang Z Y, Sun J, et al.Grain refinement of commercial pure Al treated by pulsed magneto-oscillation on the top surface of melt[J]. China Foundry, 2015, 12: 48 | [116] | Zhao J, Yu J, Li Q, et al.Structure of slowly solidified 30Cr2Ni4MoV casting with surface pulsed magneto-oscillation[J]. Mater. Sci. Technol., 2015, 31: 1589 | [117] | Zhao J, Cheng Y F, Han K, et al.Numerical and experimental studies of surface-pulsed magneto-oscillation on solidification[J]. J. Mater. Process. Technol., 2016, 229: 286 | [118] | Liu T Y, Sun J, Sheng C, et al.Influence of pulse magneto-oscillation on the efficiency of grain refiner[J]. Adv. Manuf., 2017, 5: 143 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|