Please wait a minute...
金属学报  2018, Vol. 54 Issue (2): 265-277    DOI: 10.11900/0412.1961.2017.00294
  本期目录 | 过刊浏览 |
搅拌摩擦焊接产热传热过程与材料流动的数值模拟
武传松(), 宿浩, 石磊
山东大学材料液固结构演变与加工教育部重点实验室 济南 250061
Numerical Simulation of Heat Generation, Heat Transfer and Material Flow in Friction Stir Welding
Chuansong WU(), Hao SU, Lei SHI
Key Laboratory for Liquid-Solid Structure Evolution and Materials Processing (Ministry of Education), Shandong University, Jinan 250061, China
引用本文:

武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277.
Chuansong WU, Hao SU, Lei SHI. Numerical Simulation of Heat Generation, Heat Transfer and Material Flow in Friction Stir Welding[J]. Acta Metall Sin, 2018, 54(2): 265-277.

全文: PDF(8067 KB)   HTML
摘要: 

搅拌摩擦焊接过程中的产热、传热与塑性材料流动行为直接决定了焊接接头的组织演变及力学性能。对这些物理现象开展数值模拟研究,对于深入理解搅拌摩擦焊接过程的物理机制和优化焊接工艺具有重要意义。本文综述了搅拌摩擦焊接过程产热、传热与材料流动数值模拟的国内外研究现状,指出了存在的主要问题。介绍了作者课题组近年来针对这些问题所开展的研究工作。根据搅拌头-工件界面上的受力特点,研发出了黏着系数和摩擦因数的测试-计算法,为提高数值模拟的精度奠定了基础。建立了针对复杂截面形状搅拌针的搅拌摩擦焊接过程数学模型,数值分析了3种典型搅拌头情况下焊接过程中的产热率、温度分布和塑性流动行为。建立了包含下压、停留、焊接及冷却4个阶段的搅拌摩擦焊接全过程的传热-流动耦合模型,模拟了焊接过程各阶段的产热、温度场和塑性材料流动的演变情况。在此基础上,对搅拌摩擦焊接过程数值模拟领域未来的发展趋势进行了展望,提出了下一步的研究重点。

关键词 搅拌摩擦焊接产热传热材料流动数值模拟    
Abstract

The heat generation, heat transfer and plasticized material flow in friction stir welding determine directly the microstructure evolution and mechanical properties of weld joints. Numerical simulation of these thermo-physical phenomena is of great significance for getting a deep insight into the underlying mechanisms and optimizing the process parameters of friction stir welding. This article reviews the progress status in numerical simulation of heat generation, heat transfer and plasticized material flow behaviors in friction stir welding, and outlines the unsolved problems. The research work targeting these issues, which has been conducted by the authors' group, is introduced. According to the stress characteristics at the tool-workpiece interface, the expressions of sticking rate and friction coefficient are developed, and this measurement-calculation method lays foundation for improving the accuracy of numerical analysis. Through synthetically considering the characteristics of complex-shaped tools, a three dimensional model of friction stir welding process is established. Three types of tools are taken into consideration, i.e., normal CT (conical-pin tool), ST (conical-pin with 4 flats tool) and TT (conical-pin with 3 flats tool). For the cases in application of these tools, the heat generation, temperature profile, and material flow velocity are analyzed quantitatively. A mathematical model for the whole friction stir welding process including plunge stage, dwell stage, welding stage, and cooling stage is established for numerical analysis of transient development in heat generation rate, temperature and material flow fields in each stages. Based on the status review, the trend in numerical simulation of frictions stir welding is outlooked, and the research focus for next step is proposed.

Key wordsfriction stir welding    heat generation    heat transfer    material flow    numerical simulation
收稿日期: 2017-07-17     
基金资助:国家自然科学基金项目No.51475272
作者简介:

作者简介 武传松,男,1959年生,教授

图1  搅拌摩擦焊接(FSW)过程产热的影响因素
图2  FSW过程的产热分布[12]
Case No. ω / (rmin-1) U / (mmmin-1) Mc / (Nm) δ μf
1 400 80 29.26 0.497 0.370
2 400 160 33.84 0.575 0.506
3 600 80 21.89 0.372 0.221
4 800 40 12.45 0.254 0.106
5 800 80 13.56 0.276 0.119
6 800 120 13.36 0.272 0.117
7 800 160 14.32 0.292 0.129
8 800 200 15.36 0.313 0.142
9 800 240 16.85 0.343 0.163
10 1000 80 10.11 0.206 0.081
表1  不同工艺条件下黏着系数和摩擦因数的计算值
图3  FSW全过程示意图
图4  FSW焊接过程中的产热量随时间变化曲线[38]
图5  下压阶段不同时刻工件横截面温度场[38]
图6  预热停留和焊接阶段不同时刻焊缝横断面温度场[38]
图7  距工件上表面2 mm深度处搅拌头周围的流场流线(焊接阶段)[38]
图8  几种不同的搅拌针截面形状
图9  在同一个旋转周期不同时刻的Triflute搅拌针横截面形状
图10  搅拌头旋转过程中z=3 mm截面上2点的温度变化(TT, Case No.5)[45]
图11  剪切层内塑性变形产生的体积热流分布(Case No.9)[44]
图12  工件截面上的流场(左)和流线(右)分布(Case No.7, z=3 mm)
[1] Dursun T, Soutis C.Recent developments in advanced aircraft aluminium alloys[J]. Mater. Des., 2014, 56: 862
[2] Mishra R S, De P S, Kumar N.Friction stir welding and processing[M]. New York: Springer, 2014: 11
[3] Wang G Q, Zhao Y H.Friction stir welding of aluminum alloys [M]. Beijing: China Astronautic Publishing House, 2010: 8(王国庆, 赵衍华. 铝合金的搅拌摩擦焊接 [M]. 北京: 中国宇航出版社, 2010: 8)
[4] Mishra R S, Ma Z Y.Friction stir welding and processing[J]. Mater. Sci. Eng., 2005, R50: 1
[5] Nandan R, DebRoy T, Bhadeshia H K D H. Recent advances in friction-stir welding-process, weldment structure and properties[J]. Prog. Mater. Sci., 2008, 53: 980
[6] He X C, Gu F S, Ball A.A review of numerical analysis of friction stir welding[J]. Prog. Mater. Sci., 2014, 65: 1
[7] Schmidt H, Hattel J, Wert J.An analytical model for the heat generation in friction stir welding[J]. Modell. Simul. Mater. Sci. Eng., 2003, 12: 143
[8] Nandan R, Roy G G, Lienert T J, et al.Three-dimensional heat and material flow during friction stir welding of mild steel[J]. Acta Mater., 2007, 55: 883
[9] Shi L, Wu C S, Liu H J.Analysis of heat transfer and material flow in reverse dual-rotation friction stir welding[J]. Weld. World, 2015, 59: 629
[10] Chen G Q, Shi Q Y.Recent advances in numerical simulation of material flow behavior during frictions stir welding[J]. J. Mech. Eng., 2015, 51(22): 11(陈高强, 史清宇. 搅拌摩擦焊中材料流动行为数值模拟的研究进展[J]. 机械工程学报, 2015, 51(22): 11)
[11] Simar A, Bréchet Y, De Meester B, et al.Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties[J]. Prog. Mater. Sci., 2012, 57: 95
[12] Chen G Q, Shi Q Y, Fujiya Y, et al.Simulation of metal flow during friction stir welding based on the model of interactive force between tool and material[J]. J. Mater. Eng. Perform., 2014, 23: 1321
[13] Su H, Wu C S, Bachmann M, et al.Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding[J]. Mater. Des., 2015, 77: 114
[14] Hamilton C, Sommers A, Dymek S.A thermal model of friction stir welding applied to Sc-modified Al-Zn-Mg-Cu alloy extrusions[J]. Int. J. Mach. Tools Manuf., 2009, 49: 230
[15] Bastier A, Maitournam M H, Van K D, et al.Steady state thermos mechanical modelling of friction stir welding[J]. Sci. Technol. Weld. Join., 2006, 11: 278
[16] Heurtier P, Jones M J, Desrayaud C, et al.Mechanical and thermal modelling of friction stir welding[J]. J. Mater. Process. Technol., 2006, 171: 348
[17] Liechty B C, Webb B W.Modeling the frictional boundary condition in friction stir welding[J]. Int. J. Mach. Tools Manuf., 2008, 48: 1474
[18] Schmidt H N B, Dickerson T L, Hattel J H. Material flow in butt friction stir welds in AA2024-T3[J]. Acta Mater., 2006, 54: 1199
[19] Colegrove P A, Shercliff H R.3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile[J]. J. Mater. Process. Technol., 2005, 169: 320
[20] Su H, Wu C S, Pittner A, et al.Thermal energy generation and distribution in friction stir welding of aluminum alloys[J]. Energy, 2014, 77: 720
[21] Haghpanahi M, Salimi S, Bahemmat P, et al.3-D transient analytical solution based on Green's function to temperature field in friction stir welding[J]. Appl. Math. Modell., 2013, 37: 9865
[22] Vila?a P, Quintino L, Dos Santos J F, et al. Quality assessment of friction stir welding joints via an analytical thermal model, iSTIR[J]. Mater. Sci. Eng., 2007, A445: 501
[23] Ferro P, Bonollo F.A semianalytical thermal model for fiction stir welding[J]. Metall. Mater. Trans., 2010, 41A: 440
[24] Mendez P F, Tello K E, Lienert T J.Scaling of coupled heat transfer and plastic deformation around the pin in friction stir welding[J]. Acta Mater., 2010, 58: 6012
[25] Roy G G, Nandan R, DebRoy T. Dimensionless correlation to estimate peak temperature during friction stir welding[J]. Sci. Technol. Weld. Joining, 2006, 11: 606
[26] Chao Y J, Qi X, Tang W.Heat transfer in friction stir welding-experimental and numerical studies[J]. J. Manuf. Sci. Eng., 2003, 125: 138
[27] Li T, Shi Q Y, Li H K.Residual stresses simulation for friction stir welded joint[J]. Sci. Technol. Weld. Join., 2007, 12: 664
[28] Li H K, Shi Q Y, Zhao H Y, et al.Auto-adapting heat source model for numerical analysis of friction stir welding[J]. Trans. China Weld. Inst., 2006, 27(11): 81(李红克, 史清宇, 赵海燕等. 热量自适应搅拌摩擦焊热源模型[J]. 焊接学报, 2006, 27(11): 81)
[29] Khandkar M Z H, Khan J A, Reynolds A P. Prediction of temperature distribution and thermal history during friction stir welding: Input torque based model[J]. Sci. Technol. Weld. Join., 2003, 8: 165
[30] Hamilton C, Dymek S, Sommers A.A thermal model of friction stir welding in aluminum alloys[J]. Int. J. Mach. Tools Manuf., 2008, 48: 1120
[31] Schmidt H, Hattel J.A local model for the thermomechanical conditions in friction stir welding[J]. Modell. Simul. Mater. Sci. Eng., 2004, 13: 77
[32] Guerdoux S, Fourment L.A 3D numerical simulation of different phases of friction stir welding[J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 075001
[33] Zhang Z, Zhang H W.Numerical Simulation of Friction Stir Welding [M]. Beijing: Science Press, 2016: 8(张昭, 张洪武. 搅拌摩擦焊的数值模拟 [M]. 北京: 科学出版社, 2016: 8)
[34] Colegrove P A, Shercliff H R.Two-dimensional CFD modelling of flow round profiled FSW tooling[J]. Sci. Technol. Weld. Join., 2004, 9: 483
[35] Colegrove P A, Shercliff H R.Development of Trivex friction stir welding tool Part 2—Three-dimensional flow modelling[J]. Sci. Technol. Weld. Join., 2004, 9: 352
[36] Nandan R, Roy G G, Debroy T.Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding[J]. Metall. Mater. Trans., 2006, 37A: 1247
[37] Chen G Q, Shi Q Y, Li Y J, et al.Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy[J]. Comput. Mater. Sci., 2013, 79: 540
[38] Shi L, Wu C S.Transient model of heat transfer and material flow at different stages of friction stir welding process[J]. J. Manuf. Process., 2017, 25: 323
[39] Rai R, De A, Bhadeshia H K D H, et al. Review: Friction stir welding tools[J]. Sci. Technol. Weld. Join., 2011, 16: 325
[40] Biswas P, Mandal N R.Effect of tool geometries on thermal history of FSW of AA1100[J]. Weld. J., 2011, 90: 129
[41] Gadakh V S, Kumar A, Patil G J V. Analytical modeling of the friction stir welding process using different pin profiles[J]. Weld. J., 2015, 94: 115
[42] Mehta M, Reddy G M, Rao A V, et al.Numerical modeling of friction stir welding using the tools with polygonal pins[J]. Defence Technol., 2015, 11: 229
[43] Mehta M, Arora A, De A, et al.Tool geometry for friction stir welding-optimum shoulder diameter[J]. Metall. Mater. Trans., 2011, 42A: 2716
[44] Su H.Effect of tool pin profiles on thermal field and plastic material flow in friction stir welding [D]. Ji'nan: Shandong University, 2015(宿浩. 搅拌针截面形状对搅拌摩擦焊接热过程和塑性材料流动的影响 [D]. 济南: 山东大学, 2015)
[45] Ji S D, Shi Q Y, Zhang L G, et al.Numerical simulation of material flow behavior of friction stir welding influenced by rotational tool geometry[J]. Comput. Mater. Sci., 2012, 63: 218
[46] Feulvarch E, Roux J C, Bergheau J M.A simple and robust moving mesh technique for the finite element simulation of friction stir welding[J]. J. Comput. Appl. Math., 2013, 246: 269
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[6] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[7] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[8] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[9] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[10] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[11] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[12] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[13] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[14] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[15] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.