Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1581-1592    DOI: 10.11900/0412.1961.2019.00208
  研究论文 本期目录 | 过刊浏览 |
蠕变对焊后热处理残余应力预测精度和计算效率的影响
逯世杰,王虎,戴培元,邓德安()
重庆大学材料科学与工程学院 重庆 400044
Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment
LU Shijie,WANG Hu,DAI Peiyuan,DENG Dean()
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
全文: PDF(11032 KB)   HTML
摘要: 

基于MSC. Marc软件平台,开发了考虑蠕变效应的热-弹-塑性有限元计算方法。采用该方法模拟了Q345平板接头TIG重熔焊接过程和焊后热处理过程中的应力场,并重点研究了焊后热处理过程中蠕变效应对焊接残余应力的影响,基于数值模拟结果研究了焊后热处理消除残余应力的机理。同时,采用盲孔法实测了焊接及热处理后平板接头的残余应力,并与数值模拟结果进行了对比。此外,还探讨了2种不同的蠕变模型对焊后热处理残余应力计算精度的影响,针对Q345低合金高强钢,提出了一种简易高效、适合于工程应用的蠕变模型。结果表明:数值模拟得到的残余应力与实验值吻合良好,验证了所开发的集成计算方法的有效性。热处理计算过程有必要考虑材料的蠕变效应,否则会严重高估热处理后的残余应力。采用本工作提出的简易蠕变模型,在较少损失计算精度的前提下可使计算效率提高10倍左右。

关键词 残余应力焊后热处理蠕变数值模拟    
Abstract

Low alloy high strength steel, owing to its good mechanical properties and low cost, is widely used in bridge, building, pressure vessel and other engineering structures. Steel structures will inevitably produce residual stress and deformation after welding with the characteristics of concentrated heat source and local heating. Heat treatment is recognized as an effective method to eliminate the residual stress after welding. However, there is no quantitative and systematic study on the mechanism of heat treatment to eliminate residual stress when numerical simulation method is used to study post weld heat treatment (PWHT). Meanwhile, creep is an important factor in the process of PWHT on low alloy high strength steel. It is necessary to study the influence of creep on residual stress prediction so as to develop a simplified creep model used in practice more efficiently. Based on MSC. Marc software platform, a thermal-elastic-plastic finite element method (T-E-P FEM) considering creep effect is developed. The stress field during welding and PWHT of Q345 remelting joint was simulated by the integrated calculation method. The effect of creep on welding residual stress during PWHT was emphatically studied. Based on the results of numerical simulation, the mechanism of eliminating residual stress by PWHT was explored. At the same time, the residual stresses of welded and heat treated joints were measured by blind-hole method, and the results were compared with those of numerical simulation. In addition, the effect of two different creep models on the calculation accuracy of residual stress in PWHT is also discussed. A simple and efficient creep model suitable for engineering application is proposed for Q345 low alloy high strength steel. The results show that the residual stresses obtained by numerical simulation agree well with the experimental values, which verifies the validity of the integrated calculation method developed. It is necessary to consider creep effect in the process of PWHT, otherwise the residual stress after heat treatment will be seriously overestimated. By using the simple creep model proposed, the calculation efficiency could be increased by about 10 times with less loss of calculation accuracy.

Key wordsresidual stress    post weld heat treatment (PWHT)    creep    numerical simulation
收稿日期: 2019-06-27     
ZTFLH:  TG404  
基金资助:国家自然科学基金项目(No.51875063)
通讯作者: 邓德安     E-mail: deandeng@cqu.edu.cn
Corresponding author: Dean DENG     E-mail: deandeng@cqu.edu.cn
作者简介: 逯世杰,男,1991年生,硕士生

引用本文:

逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment. Acta Metall Sin, 2019, 55(12): 1581-1592.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00208      或      https://www.ams.org.cn/CN/Y2019/V55/I12/1581

图1  试件几何尺寸及实物照片
图2  焊后热处理的温度循环曲线
图3  残余应力测量位置
图4  Q345钢的热物理性能参数[20]和力学性能参数[21]
图5  3D有限元模型
表1  数值模拟计算案例
图6  4个不同计算案例得到的纵向残余应力分布云图及中央截面焊缝附近的应力分布
图7  4个不同计算案例得到的横向残余应力分布云图及中央截面焊缝附近的应力分布
图8  焊接完成后沿直线L1上的纵向和横向残余应力分布
图9  不同计算案例沿直线L1上的纵向和横向残余应力分布
图10  热处理过程中A点纵向残余应力随时间的变化
图11  热处理过程中A点的弹性应变、塑性应变和蠕变应变随时间的变化
[1] Zou Z D, Li Y J, Yin S K, et al. Welding and Engineering Application of Low Alloy Modulated High Strength Steel [M]. Beijing: Chemical Industry Press, 2000: 26
[1] (邹增大, 李亚江, 尹士科等. 低合金调质高强度钢焊接及工程应用 [M]. 北京: 化学工业出版社, 2000: 26)
[2] Chen X Z, Huang Y M. Hot deformation behavior of HSLA steel Q690 and phase transformation during compression [J]. J. Alloys Compd., 2015, 619: 564
[3] Ji G L, Li F G, Li Q H, et al. Research on the dynamic recrystallization kinetics of Aermet100 steel [J]. Mater. Sci. Eng., 2010, A527: 2350
[4] Dai W Z, Liu J F, Gao L. Application Technology and Case of Welding Engineering for Building Steel Structures [M]. Beijing: Chemical Industry Press, 2016: 38
[4] (戴为志, 刘景凤, 高 良. 建筑钢结构焊接工程应用技术及案例 [M]. 北京: 化学工业出版社, 2016: 38)
[5] Yan H. The experiment study of residual stress in welded steel structure and FEM analysis [D]. Wuhan: Wuhan University of Technology, 2006
[5] (严 浩. 钢结构厚板焊接残余应力实验研究与有限元分析 [D]. 武汉: 武汉理工大学, 2006)
[6] An J W. The effect of welding residual stress to the performance of resistance to earthquake of beam-column connection [D]. Tianjin: Tianjin University, 2005
[6] (安俊伟. 焊接残余应力对梁柱节点抗震性能的影响 [D]. 天津: 天津大学, 2005)
[7] Shi G, Shi Y J, Ban H Y. High Strength Steel Structures [M]. Beijing: China Construction Industry Press, 2014: 30
[7] (施 刚, 石永久, 班慧勇. 高强度钢材钢结构 [M]. 北京: 中国建筑工业出版社, 2014: 30)
[8] Jia L. Finite element analysis on residual stress of welding assembly for I-beam and end-plate [D]. Ji'nan: Shandong University, 2013
[8] (贾 栗. 工字钢-端板组焊结构焊接残余应力有限元分析 [D]. 济南: 山东大学, 2013)
[9] Li X Y, Wu C S, Li W S. Study on the progress of welding science and technology in China [J]. Chin. J. Mech. Eng., 2012, 48(6): 19
[9] (李晓延, 武传松, 李午申. 中国焊接制造领域学科发展研究 [J]. 机械工程学报, 2012, 48(6): 19)
[10] Deng D A, Ren S D, Li S, et al. Influence of multi-thermal cycle and constraint condition on residual stress in P92 steel weldment [J]. Acta Metall. Sin., 2017, 53: 1532
[10] (邓德安, 任森栋, 李 索等. 多重热循环和约束条件对P92钢焊接残余应力的影响 [J]. 金属学报, 2017, 53: 1532)
[11] Fang H Y. Welding Structures [M]. 2nd Ed., Beijing: Machinery Industry Press, 2017: 109
[11] (方洪渊. 焊接结构学 [M]. 第2版,北京: 机械工业出版社, 2017: 109)
[12] Zhao R. Study of welding residual stress's numerical simulation and relieving [D]. Dalian: Dalian University of Technology, 2006
[12] (赵 锐. 焊接残余应力的数值模拟及控制消除研究 [D]. 大连: 大连理工大学, 2006)
[13] Zhao X C, Zhang Y D, Zhang H W, et al. Simulation of vibration stress relief after welding based on FEM [J]. Acta Metall. Sin. (Engl. Lett.), 2008, 21: 289
[14] Yu L. Welding residual stress analysis and optimization of post weld heat treatment of narrow gap submerged arc welding [D]. Shanghai: East China University of Science and Technology, 2017
[14] (余 磊. 窄间隙埋弧焊焊接残余应力及其热处理消除的模拟和优化研究 [D]. 上海: 华东理工大学, 2017)
[15] Venkata K A, Kumar S, Dey H C, et al. Study on the effect of post weld heat treatment parameters on the relaxation of welding residual stresses in electron beam welded P91 steel plates [J]. Procedia Eng., 2014, 86: 223
[16] Dong P S, Song S P, Zhang J M. Analysis of residual stress relief mechanisms in post-weld heat treatment [J]. Int. J. Press. Vessels Pip., 2014, 122: 6
[17] Deng D A, Ogawa K, Kiyoshima S, et al. Prediction of residual stresses in a dissimilar metal welded pipe with considering cladding, buttering and post weld heat treatment [J]. Comput. Mater. Sci., 2009, 47: 398
[18] Sun J M, Zhu J Y, Xia L Y, et al. Numerical simulation of welding residual stress and deformation induced by electro slag welding [J]. Trans. China Weld. Inst., 2016, 37(5): 23
[18] (孙加民, 朱家勇, 夏林印, 等. 电渣焊接头焊接残余应力与变形的数值模拟 [J]. 焊接学报, 2016, 37(5): 23)
[19] Deng D A, Kiyoshima S. Numerical simulation of welding residual stresses in a multi-pass butt-welded joint of austenitic stainless steel using variable length heat source [J]. Acta Metall. Sin., 2010, 46: 195
[19] (邓德安, 清岛祥一. 用可变长度热源模拟奥氏体不锈钢多层焊对接接头的焊接残余应力 [J]. 金属学报, 2010, 46: 195)
[20] Tan Z, Guo G W. Thermophysical Properties of Engineering Alloys [M]. Beijing: Metallurgical Industry Press, 1994: 42
[20] (谭 真, 郭广文. 工程合金热物性 [M]. 北京: 冶金工业出版社, 1994: 42)
[21] Yuan G L, Shu Q J, Huang Z H, et al. An experimental investigation of properties of Q345 steel pipe at elevated temperatures [J]. J. Constr. Steel Res., 2016, 118: 41
[22] Kasuya T, Ichikawa K, Fuji M. Derivation of carbon equivalent to assess hardenability of steel [J]. Sci. Technol. Weld. Join., 1998, 3(6): 317
[23] Deng D A, Kiyoshima S. Numerical simulation of welding temperature field, residual stress and deformation induced by electro slag welding [J]. Comput. Mater. Sci., 2012, 62: 23
[24] MARC. Analysis Research Corporation. Theory and user information. Palo Alto, 2007
[25] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources [J]. Metall. Trans., 1984, 15B: 299
[26] Deng D A, Zhang C H, Pu X W, et al. Influence of material model on prediction accuracy of welding residual stress in an austenitic stainless steel multi-pass butt-welded joint [J]. J. Mater. Eng. Perform., 2017, 26: 1494
[27] Fields B A, Fields R J. The prediction of elevated temperature deformation of structural steel under anisothermal conditions [R]. Gaithersburg: Department of Commerce National Institute of Standards and Technology, 1991
[28] Yan S H. Experimental study on creep behavior in steel at elevated temperature [D]. Chongqing: Chongqing University, 2015
[28] (闫守海. 钢材高温蠕变性能试验研究 [D]. 重庆: 重庆大学, 2015)
[1] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[2] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[3] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[4] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[5] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[6] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[7] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[8] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[9] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[10] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[11] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[12] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
[13] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[14] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[15] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.