Please wait a minute...
金属学报  2018, Vol. 54 Issue (2): 247-264    DOI: 10.11900/0412.1961.2017.00424
  本期目录 | 过刊浏览 |
振动过程的数值模拟在金属凝固中应用的研究进展
吴士平(), 王汝佳, 陈伟, 戴贵鑫
哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
Progress on Numerical Simulation of Vibration in the Metal Solidification
Shiping WU(), Rujia WANG, Wei CHEN, Guixin DAI
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(5912 KB)   HTML
摘要: 

将振动技术应用于金属凝固过程,既能有效改善凝固组织、提高铸件的性能,还具有成本低、节能环保的优点,因此振动技术在金属凝固中的应用得到了广泛的实验研究。但由于金属熔体的高温和不透明性阻碍了对它的测量和观察,振动对凝固影响的机理尚不完全清楚。数值模拟能够提供振动条件下流场、温度场、应力场等各个参量的变化规律,有助于更全面地理解振动的作用机理。同时,振动对金属凝固影响的数值模拟还未得到系统研究。本文介绍了振动技术在金属凝固中应用的数值模拟的研究进展,在振动方式上主要包括超声振动、机械振动及脉冲电磁场的数值模拟,在应用内容上主要包括熔体处理、充型、凝固、除杂及时效过程的数值模拟。系统地介绍了振动技术在铸造过程的各方面应用的数值模拟原理和技术的研究现状,同时对未来研究方向进行了展望。

关键词 振动超声振动机械振动脉冲电磁振动数值模拟    
Abstract

The application of vibration technology to the metal solidification process can not only effectively improve the solidified structure and the performance of castings, but also have the advantages of low cost, energy saving and environmental protection. Therefore, the application of vibration technology in metal solidification has been extensively studied in experiments. However, due to the high temperature and opacity of the metal melt, hindering its measurement and observation, the mechanism how the vibration affects the solidification is not fully understood. Numerical simulation can provide the variation law of various parameters such as flow field, temperature field and stress field under vibration condition, which helps us understand the mechanism of vibration more thoroughly. Meanwhile, the numerical simulation of the influence of vibration on the solidification of metal melt has been much less systematically studied. This paper introduces the research progress of numerical simulation of vibration applied in metal solidification. The main vibration modes include ultrasonic vibration, mechanical vibration and pulsed electromagnetic vibration. The application mainly includes melt processing, filling, solidification, purification and ageing process of numerical simulation. The current research status of numerical simulation theory and technology of vibration applied in all aspects of casting was summarized systematically. Furthermore, the future research directions of numerical simulation of vibration in metal solidification process were prospected.

Key wordsvibration    ultrasonic vibration    mechanical vibration    pulsed electromagnetic vibration    numerical simulation
收稿日期: 2017-10-12     
基金资助:国家自然科学基金项目Nos.51475120和 U1537201
作者简介:

作者简介 吴士平,男,1963年生,教授,博士

引用本文:

吴士平, 王汝佳, 陈伟, 戴贵鑫. 振动过程的数值模拟在金属凝固中应用的研究进展[J]. 金属学报, 2018, 54(2): 247-264.
Shiping WU, Rujia WANG, Wei CHEN, Guixin DAI. Progress on Numerical Simulation of Vibration in the Metal Solidification. Acta Metall Sin, 2018, 54(2): 247-264.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00424      或      https://www.ams.org.cn/CN/Y2018/V54/I2/247

图1  不同长度的L型和T型波导杆的模态分析[32]
图2  不同超声功率下获得的铸锭显微组织和模拟结果[50]
图3  80 W超声在熔体中的声压幅值分布[59]
图4  在超声作用下不同冒口体积的A356合金铸件的凝固形态[66]
Simulation content Simulation software Governing equation Constitutive equation Ref.
Modal analysis ANSYS Oscillation equation Hooke's law [30~33]
Acoustic flow ANSYS-FLUENT, PROCAST N-S equation Newton's law of viscous fluid [51,52,57]
Temperature field ANSYS-FLUENT, PROCAST Heat conduction equation Newton's law of viscous fluid [57]
Cavitation effect ANSYS-FLUENT Cavitation model Newton's law of viscous fluid [49,54]
Acoustic field COMSOL Wave equation Newton's law of viscous fluid [53,55,56]
表1  超声振动数值模拟在金属凝固过程中的应用情况[30~33,49,51~57]
图5  干砂充填过程[71]
图6  振动条件下液态金属的充型过程[77]
Simulation content Simulation software Governing equation Constitutive equation Ref.
Vibration moulding EDEM, 3DEC et al. Momentum equation Hooke's law [70~72]
Modal analysis ANSYS Oscillation equation Newton's law of viscous fluid [85~87]
Flow field FLOW-3D, ANSYS-FLUENT N-S equation Newton's law of viscous fluid [77~82]
Temperature field MAGMASOFT,
ANSYS-FLUENT
Heat conduction equation Newton's law of viscous fluid [88~92]
表2  机械振动数值模拟在金属凝固过程中的应用情况[70~72,77~82,85~92]
图7  不同截面宽厚比下脉冲磁场在熔体中产生的流动矢量图[106]
Simulation content Simulation software Governing equation Constitutive equation Ref.
Electromagnetic field ANSYS, Opera 3D Maxwell equation Newton's law of viscous fluid [95,99,107,112,115,117]
Flow field ANSYS-FLUENT N-S equation [95,97~101,104~106,
108,109,115,117]
Newton's law of viscous fluid
Temperature field ANSYS-FLUENT Heat conduction equation Newton's law of viscous fluid [98,99,112]
表 3  脉冲电磁振动数值模拟在金属凝固过程中的应用情况[95,97~101,104~109,112,115,117]
[1] Shukla D P, Goel D P, Pandey P C.Influence of vibration during solidification on ingot soundness and mechanical properties of aluminum alloy test castings[J]. All-India Semin. Alum., 1978, 1: 26
[2] Garlick R G, Wallace J F.Grain refinement of solidifying metals by vibration[J]. Trans. Am. Foundrymen's Soc., 1959, 67: 366
[3] Burbure R R, Hareesha I, Murthy K S S. Influence of low frequency vibrations on aluminium eutectics[J]. Br. Foundryman, 1979, 72: 34
[4] Pillai N R.Effect of low frequency mechanical vibration on structure of modified aluminum-silicon eutectic[J]. Metall. Trans., 1972, 3: 1313
[5] Campbell J.Effects of vibration during solidification[J]. Int. Met. Rev., 1981, 26: 71
[6] Seal A K, Banerjee M K.Effect of vibration on the solidification of grey cast iron[J]. Indian Foundry J., 1984, 30: 15
[7] Richards R S, Rostoker W.The influence of vibration on the solidification of an aluminum alloy[J]. Trans. ASM, 1956, 48: 884
[8] Southgate P D.Action of vibration on solidifying aluminum alloys[J]. Trans. Am. Inst. Min. Metall. Eng., 1957, 209: 514
[9] Batyshev A I, Kuskov P K.Vibration treatment of cast aluminum blanks[J]. Sov. Cast. Technol., 1989, 12: 24
[10] Puskar A.The use of high-intensity ultrasonics[J]. Mater. Sci. Monogr., 1982, 13: 32
[11] Hiedemann E A.Metallurgical effects of ultrasonic waves[J]. J. Acoust. Soc. Am., 1954, 26: 831
[12] Southin R T.The influence of low-frequency vibration on the nucleation of solidifying metals[J]. J. Inst. Met., 1966, 94: 401
[13] Balandin G F, Yu Y P.Effect of vibration on the crystallization process in aluminium casting[J]. Russ. Cast. Prod., 1963: 221
[14] Fisher T P.Effects of vibrational energy on the solidification of aluminium alloys[J]. Br. Foundryman, 1973, 66: 71
[15] Kocatepe K, Burdett C F.Effect of low frequency vibration on macro and micro structures of LM6 alloys[J]. J. Mater. Sci., 2000, 35: 3327
[16] Wang H X, Zhang G P, Xu C X, et al.Effect of mechanical vibration on grain refinement and solidification shrinkage of aluminum[J]. Res. Stud. Foundry Equip., 2007, (1): 28(王红霞, 张国平, 许春香等. 机械振动对纯Al晶粒细化及凝固收缩的影响[J]. 铸造设备研究, 2007, (1): 28)
[17] Wang C J, Han D D, Chen L, et al.Application and development of vibration technology in metal casting molding[J]. J. Hebei Univ. Sci. Technol., 2014, 35: 229(王成军, 韩董董, 陈蕾等. 振动技术在金属材料铸造成形中的应用与发展[J]. 河北科技大学学报, 2014, 35: 229)
[18] Anderson J D Jr. Computational Fluid Dynamics[M]. New York: McGraw-Hill Education, 1995: 49
[19] Niu B H, Sun C Y.Semi-spatial Media and Seismic Wave Propagation: Theory and Application of Seismic Wave Propagation [M]. Beijing: Petroleum Industry Press, 2002: 39(牛滨华, 孙春岩. 半空间介质与地震波传播: 地震波传播理论与应用 [M]. 北京: 石油工业出版社, 2002: 39)
[20] Carcione J M.Seismic modeling in viscoelastic media[J]. Geophysics, 1993, 58: 110
[21] Biot M A.Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. J. Acoust. Soc. Am., 1956, 28: 168
[22] Li Q C, Chen K Y, Zeng S Y.Influence of rare earth additions on rheological behavior of Al-5Cu alloy in solid-liquid coexistence zone[J]. Mater. Sci. Technol., 1991, 7: 770
[23] Ludwig O, Drezet J M, Ménésès P, et al.Rheological behavior of a commercial AA5182 aluminum alloy during solidification[J]. Mater. Sci. Eng., 2005, A413: 174
[24] Shao Z W, Le Q C, Cui J Z, et al.Numerical simulation of standing waves for ultrasonic purification of magnesium alloy melt[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: S382
[25] Wang R J, Wu S P, Chen W.Numerical simulation of mechanical wave propagation during solidification of ZL205A alloy [A]. 8th International Federation of Physical and Numerical Simulation of Materials Processing [C]. Seattle: Purdue University Press, 2016: 28
[26] Gao S L, Zhai Q J, Qi F P, et al.Application and development of high-intensity ultrasonic in solidification process of metals[J]. Mater. Rev., 2002, 16: 5(高守雷, 翟启杰, 戚飞鹏等. 超声波在金属凝固中的应用与发展[J]. 材料导报, 2002, 16: 5)
[27] Parrini L.New technology for the design of advanced ultrasonic transducers for high-power applications[J]. Ultrasonics, 2004, 41: 261
[28] Gu Y J, Yang K, Zhu P.Finite element analysis on power ultrasonic vibration system[J]. J. North Chin. Electr. Power Univ., 1999, 26: 78(顾煜炯, 杨昆, 朱萍. 功率超声振动系统的有限元分析[J]. 华北电力大学学报, 1999, 26: 78)
[29] Liang Z F, Zhou G P, Zhang Y H.Application of ANSYS in power ultrasound[J]. Mach. Electr., 2005, (8): 10(梁召峰, 周光平, 张亦慧. ANSYS在功率超声领域中的应用[J]. 机械与电子, 2005, (8): 10)
[30] Deng L N, Li X Q, Wu H, et al.Design and research on horn applied in aluminum alloy ultrasonic casting[J]. Hot Work. Technol., 2010, 39(17): 68(邓丽娜, 李晓谦, 吴昊等. 铝合金超声波铸造用变幅杆的设计与研究[J]. 热加工工艺, 2010, 39(17): 68)
[31] Zhang Y.Apparatus design of the combined power ultrasonic and applied pressure and its effect on microstructure of the Al-Cu alloy [D]. Guangzhou: South China University of Technology, 2016(张杨. 超声—压力耦合的装置设计及其对Al-Cu合金微观组织的影响 [D]. 广州: 华南理工大学, 2016)
[32] Liang G, Chen S, Zhou Y J, et al.Numerical simulation and experimental study of an ultrasonic waveguide for ultrasonic casting of 35CrMo steel[J]. J. Iron Steel Res. Int., 2016, 23: 772
[33] Zhu Y L, Bian F L, Wang Y L, et al.Conjugate heat transfer analysis of an ultrasonic molten metal treatment system[J]. Chin. J. Mech. Eng., 2014, 27: 986
[34] Rayleigh L.On the pressure developed in a liquid during the collapse of a spherical cavity[J]. London, Edinb. Dublin Philosoph. Mag. J. Sci., 1917, 34: 94
[35] Plesset M S.The dynamics of cavitation bubbles[J]. J. Appl. Mech., 1949, 16: 277
[36] Neppiras E A, Noltingk B E.Cavitation produced by ultrasonics: Theoretical conditions for the onset of cavitation[J]. Proc. Phys. Soc. London, 1951, 64B: 1032
[37] Keller J B, Miksis M.Bubble oscillations of large amplitude[J]. J. Acoust. Soc. Am., 1980, 68: 628
[38] Flynn H G.Cavitation dynamics. I. A mathematical formulation[J]. J. Acoust. Soc. Am., 1975, 57: 1379
[39] Liu H L, Liu D X, Wang Y, et al.Numerical research status and prospects of cavitating flow in a pump[J]. Fluid Mach., 2011, 39: 38(刘厚林, 刘东喜, 王勇等. 泵空化流数值计算研究现状及展望[J]. 流体机械, 2011, 39: 38)
[40] Kunz R F, Boger D A, Stinebring D R, et al.A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Comput. Fluids, 2000, 29: 849
[41] Singhal A K, Athavale M M, Li H, et al.Mathematical basis and validation of the full cavitation model[J]. J. Fluids Eng., 2002, 124: 617
[42] Merkle C L, Feng J, Buelow P E O. Computational modeling of dynamics of sheet cavitation [A]. 3rd International Symposium on Cavitation[C]. France: Grenoble, 1998, 2: 47
[43] Senocak I, Shyy W.A pressure-based method for turbulent cavitating flow computations[J]. J. Comput. Phys., 2002, 176: 363
[44] Saito Y, Nakamori I, Ikohagi T. Numerical analysis of unsteady vaporous cavitating flow around a hydrofoil [A]. 5th International Symposium on Cavitation [C]. Osaka, 2003, CD-R: Cav03-OS-1-006
[45] Nastac L.Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J]. Acta Mater., 1999, 47: 4253
[46] Nastac L.Mathematical modeling of the solidification structure evolution in the presence of ultrasonic stirring[J]. Metall. Mater. Trans., 2011, 42B: 1297
[47] Jian X, Xu H, Meek T T, et al.Effect of power ultrasound on solidification of aluminum A356 alloy[J]. Mater. Lett., 2005, 59: 190
[48] Nastac L.Multiscale modeling of the solidification microstructure evolution in the presence of ultrasonic stirring [A]. IOP Conference Series: Materials Science and Engineering [C]. Philadelphia: IOP Publishing, 2012, 33: 012079
[49] Shao Z W, Le Q C, Zhang Z Q, et al.Numerical simulation of acoustic pressure field for ultrasonic grain refinement of AZ80 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 2476
[50] Shao G J, Hu S C, Xia C X, et al.Numerical simulation and experimental verification on effects of ultrasonic treatment on solidification structure of 7050 aluminum alloy[J]. Spec. Cast. Nonferrous Alloy, 2011, 31: 119(邵高建, 胡仕成, 夏晨希等. 超声对7050铝合金凝固组织影响的数值模拟[J]. 特种铸造及有色合金, 2011, 31: 119)
[51] Kong W, Cang D Q.Effects of ultrasound on the flow field in molten steel and solidification structure[J]. Simulation, 2012, 88: 694
[52] Ishiwata Y, Komarov S, Takeda Y.Investigation of acoustic streaming in aluminum melts exposed to high-intensity ultrasonic irradiation [A]. 13th International Conference on Aluminum Alloy[C] Pittsburgh: Springer, 2012: 183
[53] Huang H J, Xu Y F, Da S, et al.Effect of ultrasonic melt treatment on structure refinement of solidified high purity aluminum[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2414
[54] Haghayeghi R, Ezzatneshan E, Bahai H.Retracted Article: Grain refinement of AA5754 aluminum alloy by ultrasonic cavitation: Experimental study and numerical simulation[J]. Met. Mater. Int., 2015, 21: 109
[55] Zhai W, Wang B J, Liu H M, et al.Three orthogonal ultrasounds fabricate uniform ternary Al-Sn-Cu immiscible alloy[J]. Sci. Rep., 2016, 6: 36718
[56] Zhai W, Liu H M, Hong Z Y, et al.A numerical simulation of acoustic field within liquids subject to three orthogonal ultrasounds[J]. Ultrason. Sonochem., 2017, 34: 130
[57] Wang G, Croaker P, Dargusch M, et al.Simulation of convective flow and thermal conditions during ultrasonic treatment of an Al-2Cu alloy[J]. Comput. Mater. Sci., 2017, 134: 116
[58] Chen X R, Le Q C, Wang X B, et al.Variable-frequency ultrasonic treatment on microstructure and mechanical properties of ZK60 alloy during large diameter semi-continuous casting[J]. Metals, 2017, 7: 173
[59] Shao Z W, Le Q C, Zhang Z Q, et al.Effect of ultrasonic power on grain refinement and purification processing of AZ80 alloy by ultrasonic treatment[J]. Met. Mater. Int., 2012, 18: 209
[60] Yasuda K, Umemura S I, Takeda K.Particle separation using acoustic radiation force and elecrostatic force[J]. J. Acoust. Soc. Am., 1996, 99: 1965
[61] Weiser M A H, Apfel R E, Neppiras E A. Interparticle forces on red cells in a standing wave field[J]. Acta Acust. United Acust., 1984, 56: 114
[62] Schram C J.Manipulation of particles in an acoustic field[J]. Adv. Sonochem., 1991, 2: 293
[63] Yan H, Huang W X. Numerical simulation on thixo-forging of magnesium matrix composite [J]. Adv. Mater. Res., 2011, 189-193: 2535
[64] Huang W X, Yan H, Huang B H.Numerical simulation of rheoforming of Al2Y/AZ91 magnesium matrix composites[J]. Rare Met., 2016, 40: 776(黄文先, 闫洪, 黄碧浩. Al2Y/AZ91镁基复合材料流变成形数值模拟[J]. 稀有金属, 2016, 40: 776)
[65] Rao Y S, Yan H, Wan J.Rheological model of semisolid Mg2Si/AM60 composites prepared by ultrasonic vibration treatment[J]. Rare Met., 2015, doi: 10.1007/s12598-015-0619-x
[66] Shin S S, Kim W C, Kim K H, et al.Improvement of riser efficiency using high-intensity ultrasonic treatment in A356 alloy[J]. Mater. Trans., 2015, 56: 1605
[67] Yang M S, Bao Y, Liu H Z.Experimental study on compaction properties of dry sand in expendable pattern casting[J]. Foundry Technol., 2000, (2): 42(杨卯生, 宝音, 刘宏志. 消失模铸造干砂紧实特性的试验研究[J]. 铸造技术, 2000, (2): 42)
[68] Li L X, Li Z M, Tan J B, et al.Properties of sand filling and compaction in pattern cavity of horizontal varied section on EPC[J]. Foundry, 2003, 52: 412(李立新, 李增民, 谭建波等. 消失模铸造水平变截面型腔干砂的充填紧实特性[J]. 铸造, 2003, 52: 412)
[69] Martin C L, Bouvard D, Shima S.Study of particle rearrangement during powder compaction by the discrete element method[J]. J. Mech. Phys. Solids., 2003, 51: 667
[70] He T, Wang C J, Zhang D S.Sand colony motion characteristics during vibration moulding process for epc based on EDEM[J]. Spec. Cast. Nonferrous Alloy, 2013, 33: 542(何涛, 王成军, 张东速. 基于EDEM的EPC干砂造型中的型砂运动特性[J]. 特种铸造及有色合金, 2013, 33: 542)
[71] Wang C J, He T, Han D D, et al.Simulation research on rear supporting legs of entry-driving machine's vibration model based on EDEM[J]. J. Anhui Polyt. Univ., 2014, 29(1): 44(王成军, 何涛, 韩董董等. 基于EDEM的掘进机后支撑腿振动造型模拟研究[J]. 安徽工程大学学报, 2014, 29(1): 44)
[72] Zhang X J, Wu Z M, Zhang F.Simulation of discrete element method for vibration type reclamation of casting used sand[J]. Hot Work. Technol., 2013, 42(13): 44(张希俊, 武智猛, 张方. 铸造旧砂振动再生的离散元法模拟[J]. 热加工工艺, 2013, 42(13): 44)
[73] Zhao J H, Ma Q, Jin T, et al.Experimental investigation of the effect of mechanical vibration on the filling ability of A356 aluminum alloy[J]. J. Funct. Mater., 2014, 45: 15129(赵建华, 马强, 金通等. 机械振动对A356合金充型能力影响的研究[J]. 功能材料, 2014, 45: 15129)
[74] Zhao Z, Fan Z T, Cheng P, et al.Influence of mechanical vibration on the filling capacity of A356 and AZ91D in lost foam casting[J]. J. Huazhong Univ. Sci. Technol.(Nat. Sci. Ed.), 2009, 37: 82(赵忠, 樊自田, 成平等. 机械振动对A356和AZ91D消失模充型的影响[J]. 华中科技大学学报: 自然科学版, 2009, 37: 82)
[75] Zhao J H, Hou Z, Wang Y J.Effect of mechanical vibration on filling ablity of AZ91 magnesium alloy[J]. Mater. Sci. Technol., 2013, 21: 69(赵建华, 侯钊, 王亚军. 机械振动对AZ91镁合金充型能力的影响[J]. 材料科学与工艺, 2013, 21: 69)
[76] Taghavi F, Saghafian H, Kharrazi Y H K. Study on the ability of mechanical vibration for the production of thixotropic microstructure in A356 aluminum alloy[J]. Mater. Des., 2009, 30: 115
[77] Abdul-Karem W, Green N, Al-Raheem K F. Vibration-assisted filling capability in thin wall investment casting[J]. Int. J. Adv. Manuf. Technol., 2012, 61: 873
[78] Jiang F, Feng J M, Wang Y J, et al.Structure optimization of castings based on vibration casting[J]. Foundry Technol., 2014, (1): 90(江帆, 冯均明, 王一军等. 基于振动铸造的铸件结构参数优化[J]. 铸造技术, 2014, (1): 90)
[79] Jiang F, Feng J M, Wang Y J.Processing parameters optimization of vibration casting[J]. Spec. Cast. Nonferrous Alloy, 2014, 34: 580(江帆, 冯均明, 王一军. 振动铸造工艺参数优化[J]. 特种铸造及有色合金, 2014, 34: 580)
[80] Jiang F, Feng J M, Wang Y J.Numerical simulation of liquid flow during filling process in vibration casting[J]. Spec. Cast. Nonfe-rrous Alloy, 2013, 33: 1010(江帆, 冯均明, 王一军. 振动铸造充型过程液体流动的数值模拟[J]. 特种铸造及有色合金, 2013, 33: 1010)
[81] Wang C J, Li L, Liu Q, et al.Numerical simulation of influence of multi-dimensional vibration on molten metal filling[J]. Hot Work. Technol., 2015, 23(44): 80(王成军, 李龙, 刘琼等. 多维振动对金属液充型影响的数值模拟研究[J]. 热加工工艺, 2015, 23(44): 80)
[82] Wang C J, Liu K, Han D D, et al.Influent of multi-dimensional vibration on casting filling process[J]. Spec. Cast. Nonferrous Alloy, 2015, 35: 696(王成军, 刘凯, 韩董董等. 多维振动对铸造充型过程的影响[J]. 特种铸造及有色合金, 2015, 35: 696)
[83] Han Y Z, Liu A M.Research situation and development of vibration stress relief technology[J]. Foundry Technol., 2013, 4: 479(韩衍昭, 刘爱敏. 振动时效技术的研究现状与发展[J]. 铸造技术, 2013, 4: 479)
[84] Dawson R, Moffat D G.Vibratory stress relief: A fundamental study of its effectiveness[J]. J. Eng. Mater. Technol., 1980, 102: 169
[85] Liu A M, Han Y Z.Study on technology parameters of vibration stress relief about castings based on finite element method[J]. Hot Work. Technol., 2012, 41(9): 65(刘爱敏, 韩衍昭. 基于有限元法的铸件振动时效工艺参数研究[J]. 热加工工艺, 2012, 41(9): 65)
[86] Jian J K, Gao Y Y, Zou X, et al.VSR simulation and analysis of weld rectangular sheet[J]. Heat. Treat. Met., 2015, 40: 179(简健昆, 高永毅, 邹曦等. 焊接矩形薄板的振动时效模拟与分析[J]. 金属热处理, 2015, 40: 179)
[87] Kuo J K, Huang P H, Guo M J.Removal of CrMo alloy steel components from investment casting gating system using vibration-excited fatigue failure[J]. Int. J. Adv. Manuf. Technol., 2017, 89: 101
[88] Lyubimov D V, Lyubimova T P, Parshakova Y N, et al.Effect of high-frequency vibrations on oriented crystallization of binary alloys[J]. J. Surf. Invest. X-Ray, Synchrotron Neutron Tech., 2009, 3: 116
[89] Lyubimova T P, Parshakova Y N.Numerical investigation of heat and mass transfer during vertical Bridgman crystal growth under rotational vibrations[J]. J. Cryst. Growth, 2014, 385: 82
[90] Liu Y C, Yu W C, Roux B, et al.Thermal-solutal flows and segregation and their control by angular vibration in vertical Bridgman crystal growth[J]. Chem. Eng. Sci., 2006, 61: 7766
[91] Timelli G, Della Corte E, Bonollo F.Effect of mechanical mould vibration on solidification behaviour and microstructure of A360-SiCp metal-matrix composites [A]. Materials Science Forum[C]. Zürich: Trans Tech Publications, 2011, 678: 105
[92] Guo Z Y.Effect of oscillation on flow field and temperature field during the twin-roll strip casting process [D]. Qinhuangdao: Yanshan University, 2016(郭志远. 双辊薄带振动铸轧数值模拟及实验研究 [D]. 秦皇岛: 燕山大学, 2016)
[93] Monk P.Analysis of a finite element method for Maxwell's equations[J]. SIAM J. Numer. Anal., 1992, 29: 714
[94] Liao X L, Zhai Q J, Luo J, et al.Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J]. Acta Mater., 2007, 55: 3103
[95] Zhang Y, Ding H, Jiang S, et al.Numerical simulation of electro-magnetic and flow fields of TiAl melt under electric field[J]. China Foundry, 2010, 7: 241
[96] Zhao Z L, Wang J L, Liu L.Grain refinement by pulse electric discharging and undercooling mechanism[J]. Mater. Manuf. Process., 2011, 26: 249
[97] Ma J C, Na X Z.Numerical simulation of the electromagnetic field in molten metal under electric current pulse[J]. J. Iron Steel Res., 2012, 24(1): 10(马静超, 那贤昭. 脉冲电流作用下金属熔体内电磁场分布的数值模拟[J]. 钢铁研究学报, 2012, 24(1): 10)
[98] Li X B, Lu F G, Cui H C, et al.Effect of electric current pulse on flow behaviour of Al melt in parallel electrode process[J]. Mater. Sci. Technol., 2013, 29: 226
[99] Li X B, Lu F G, Cui H C, et al.Migration behavior of solidification nuclei in pure Al melt under effect of electric current pulse[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 192
[100] R?biger D, Zhang Y H, Galindo V, et al.The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents[J]. Acta Mater., 2014, 79: 327
[101] R?biger D, Zhang Y, Galindo V, et al.Experimental study on directional solidification of Al-Si alloys under the influence of electric currents [A]. International Symposium on Liquid Metal Processing & Casting 2015 [C]. IOP Publishing, Leoben, Austria, 2016, 143(1): 012021
[102] Xu Z, Wang X, Liang D, et al.Electric current pulse induced grain refinement in pure aluminium[J]. Mater. Sci. Technol., 2015, 31: 1595
[103] Kolesnichenko A F, Podoltsev A D, Kucheryavaya I N.Action of pulse magnetic field on molten metal[J]. ISIJ Int., 1994, 34: 715
[104] Zi B T, Yao K F, Xu G M, et al.Numerical simulation of liguid alloy flow field during solidification under applied pulsed magnetic fields[J]. Acta Phys. Sin., 2003, 52: 115(訾炳涛, 姚可夫, 许光明等. 脉冲磁场下金属熔体凝固流场的数值模拟[J]. 物理学报, 2003, 52: 115)
[105] Zhang Y J, Hua J S, Wang E G, et al.Numerical analysis of electromagnetic field in the molten steel under pulsed magnetic field[J]. Mater. Sci. Technol., 2010, 18: 639(张永杰, 华骏山, 王恩刚等. 脉冲磁场作用于钢液熔体的电磁场数值模拟[J]. 材料科学与工艺, 2010, 18: 639)
[106] Teng Y F, Li Y J, Feng X H, et al.Effect of rectangle aspect ratio on grain refinement of superalloy K4169 under pulsed magnetic field[J]. Acta Metall. Sin., 2015, 51: 844(滕跃飞, 李应举, 冯小辉等. 脉冲磁场作用下矩形截面宽厚比对 K4169 高温合金晶粒细化的影响[J]. 金属学报, 2015, 51: 844)
[107] Ma X P, Yang Y S, Wang B.Effect of pulsed magnetic field on superalloy melt[J]. Int. J. Heat Mass Transfer, 2009, 52: 5285
[108] Wang B, Yang Y S, Ma X P, et al.Simulation of electromagnetic-flow fields in Mg melt under pulsed magnetic field[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 283
[109] Li Y J, Teng Y F, Yang Y S.Refinement mechanism of low voltage pulsed magnetic field on solidification structure of silicon steel[J]. Met. Mater. Int., 2014, 20: 527
[110] Ji H M, Luo T J, Yang Y S.Numerical simulation and experimental research of low voltage pulsed magnetic field DC casting of AZ80 magnesium alloy[J]. Chin. J. Nonferrous Met., 2017, 27: 468(冀焕明, 罗天骄, 杨院生. AZ80镁合金低压脉冲磁场半连续铸造过程的数值模拟和实验研究[J]. 中国有色金属学报, 2017, 27: 468)
[111] Li Y J, Ma X P, Yang Y S.Grain refinement of as-cast superalloy IN718 under action of low voltage pulsed magnetic field[J]. Trans. Nonferrous. Met. Soc. China, 2011, 21: 1277
[112] Wu L, Wang T M, Fu Y, et al.Simulation study on continuous casting process of Al/Al bimetal round billet under multi-electromagnetic [A]. IOP Conference Series: Materials Science and EngineeringI [C]. IOP Publishing, Schladming, Austria, 2012, 33(1): 012020
[113] Musaeva D, Ilin V, Baake E, et al.Numerical simulation of the melt flow in an induction crucible furnace driven by a Lorentz force pulsed at low frequency[J]. Magnetohydrodynamics, 2015, 51: 771
[114] Liu F, Zhang L Y.Numerical simulation of magnetic field and flow field distributions during pure aluminum solidification under pulse magneto-oscillation[J]. Foundry, 2012, 61: 285(刘芳, 张璐云. 脉冲磁致振荡下纯铝凝固磁场与流场分布的数值模拟[J]. 铸造, 2012, 61: 285)
[115] Liang D, Liang Z Y, Sun J, et al.Grain refinement of commercial pure Al treated by pulsed magneto-oscillation on the top surface of melt[J]. China Foundry, 2015, 12: 48
[116] Zhao J, Yu J, Li Q, et al.Structure of slowly solidified 30Cr2Ni4MoV casting with surface pulsed magneto-oscillation[J]. Mater. Sci. Technol., 2015, 31: 1589
[117] Zhao J, Cheng Y F, Han K, et al.Numerical and experimental studies of surface-pulsed magneto-oscillation on solidification[J]. J. Mater. Process. Technol., 2016, 229: 286
[118] Liu T Y, Sun J, Sheng C, et al.Influence of pulse magneto-oscillation on the efficiency of grain refiner[J]. Adv. Manuf., 2017, 5: 143
[1] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[2] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[3] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[4] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[5] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[6] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[7] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
[8] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[9] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
[10] 王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军. 原子尺度下凝固形核计算模拟研究的进展[J]. 金属学报, 2018, 54(2): 204-216.
[11] 沈厚发, 陈康欣, 柳百成. 钢锭铸造过程宏观偏析数值模拟[J]. 金属学报, 2018, 54(2): 151-160.
[12] 朱苗勇, 娄文涛, 王卫领. 炼钢与连铸过程数值模拟研究进展[J]. 金属学报, 2018, 54(2): 131-150.
[13] 廖敦明, 曹流, 孙飞, 陈涛. 铸造宏观过程数值模拟技术的研究现状与展望[J]. 金属学报, 2018, 54(2): 161-173.
[14] 王强, 何明, 朱晓伟, 李显亮, 吴春雷, 董书琳, 刘铁. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018, 54(2): 228-246.
[15] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.