Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1569-1580    DOI: 10.11900/0412.1961.2019.00082
  研究论文 本期目录 | 过刊浏览 |
北京科技大学机械工程学院 北京 100083
Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method
ZHANG Qingdong,LIN Xiao,LIU Jiyang(),HU Shushan
School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(12134 KB)   HTML


关键词 Q&P钢热处理数值模拟实验研究    

Quenching and partitioning (Q&P) steel is a kind of high strength and toughness steels which has a majority of martensite at room temperature and a certain amount of retained austenite through the quenching and carbon distribution heat treatment process of cold-rolled carbon-silicon-manganese steel. In this work, the typical Q&P high-strength steel, QP980 steel, is taken as an example to carry out the physical simulation study of the whole process of heat treatment. A creep-like strain equation coupled with temperature and time is proposed to describe the volume change of materials during Q&P heat treatment. The phase transformation kinetics equation, phase transformation strain and phase transformation plasticity equation of Q&P heat treatment with the influence of quenching temperature were established, and the thermal expansion coefficient of each phase of Q&P steel was obtained. According to the coupling principles of temperature, microstructure and stress-strain field, a numerical simulation model for the whole process of Q&P heat treatment was developed. In this model, the physical simulation of QP980 steel thermal-elastoplastic incremental constitutive equations are implemented to commercial finite element software ABAQUS as the user subroutines. The model was validated by Q&P heat treatment experiment on Gleeble thermal-mechanical simulator. The calculated values of the models are both in good agreement with the experimental values.

Key wordsQ&P steel    heat treatment    numerical simulation    experimental research
收稿日期: 2019-03-26     
ZTFLH:  TG156.34  
通讯作者: 刘吉阳     E-mail:
Corresponding author: Jiyang LIU     E-mail:
作者简介: 张清东,男,1965年生,博士,教授


张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method. Acta Metall Sin, 2019, 55(12): 1569-1580.

链接本文:      或

图1  淬火-分配(Q&P) QP980高强钢的连续冷却实验方案及CCT曲线
图2  不同冷却速率淬火后的常温组织
图3  热膨胀实验及相变动力学实验方案
图4  相变塑性实验方案
图5  不同分配温度的Q&P热处理实验加热冷却制度
图6  无应力淬火及回火过程轴向应变随温度变化的关系曲线
图7  第一次淬火过程马氏体体积分数(ξM1)与淬火温度的关系
图8  不同淬火温度下第二次淬火过程前后的组织变化
图9  不同淬火温度Q&P热处理第二次淬火过程的相变动力学曲线
图10  外载作用下马氏体相变过程的宽向应变
图11  相变塑性系数(k)实测值及线性拟合
图12  不同分配温度下Q&P热处理分配过程中的轴向应变

Time / s

Coefficient of primary temperature termCoefficient of quadratic temperature termCoefficient of cubic temperature term


表1  约化温度系数的三次多项式拟合结果
Coefficient of equation

Coefficient value

Coefficient of equation

Coefficient value

Coefficient of equation

Coefficient value

表2  QP980高强钢类蠕变应变方程系数
图13  类蠕变应变计算值与实测值对比
图14  Gleeble上Q&P热处理实验加热冷却加载制度
图15  模型验证实验试样均热区有限元模型
图16  Q&P热处理过程各阶段试样变形模拟值与实测值对比
图17  Q&P热处理各阶段相体积分数随时间的变化
[1] Speer J G, Edmonds D V, Rizzo F C, et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 219
[2] Speer J G, Assun??o F C R, Matlock D K, et al. The "quenching and partitioning" process: Background and recent progress [J]. Mater. Res., 2005, 8: 417
[3] Xu Z Y. New Processes for Steel Heat Treatment [J]. Heat Treatment, 2007(01): 1
[3] (徐祖耀.钢热处理的新工艺 [J]. 热处理, 2007(01): 1)
[4] Khan S A, Bhadeshia H K D. Kinetics of Martensitic transformation in partially bainitic 300M steel [J]. Mater. Sci. Eng., 1990, A129: 257
[5] Bhadeshia H K D H. Carbon content of retained austenite in quenched steels [J]. Met. Sci., 1983, 17: 151
[6] Yamanaka S, Sakanoue T, Yoshii T, et al. Influence of transformation plasticity on the distortion of carburized quenching process of Cr-Mo steel ring [J]. J. Soc. Mater. Sci. Jpn., 1999, 48: 733
[7] Ju D Y, Narazaki M. Simulation and experimental verification of residual stress and distortion during quenching of steel [A]. Proceeding of the 20th ASM Heat Treating Society Conference [C]. St. Louis, MO, USA: ASM International, 2000: 441
[8] Arimoto K, Horino T, Ikuta F, et al. Explanation of the origin of distortion and residual stress in water quenched cylinders using computer simulation [J]. J. ASTM Int., 2006, 3: 253
[9] Inoue T, Yamaguchi T, Wang Z G. Stresses and phase transformations occurring in quenching of carburized steel gear wheel [J]. Mater. Sci. Technol., 1984, 1: 872
[10] Mukai R, Ju D Y. Simulation of carburizing-quenching of a gear. Effect of carbon content on residual stresses and distortion [J]. J. Phys. IV France, 2004, 120: 489
[11] Imatani S, Okuno Y, Inoue T. Experiment and simulation for thick-plate bending by high frequency inductor [J]. Acta Metall. Sin. (Engl. Lett.), 1998, 11: 449
[12] Inoue T, Arimoto K, Ju D Y. Development of heat treatment simulation program "HEARTS"—Theory, strategy, function and some examples [A]. Residual Stresses III: Science and Technology [C], London and New York: Elsevier Applied Science,1992, 1: 226
[13] Inoue T, Arimoto K. Development and implementation of CAE system “HEARTS” for heat treatment simulation based on metallo-thermo-mechanics [J]. J. Mater. Eng. Perform, 1997, 6: 51
[14] Ju D Y, Inoue T. On the material process simulation code COSMAP-simulated examples and its experimental verification for heat treatment process [J]. Key Eng. Mater., 2007, 345-346: 955
[15] Inoue T, Tanaka T, Ju D Y, et al. Transformation plasticity and the effect on quenching process simulation [J]. Key Eng. Mater., 2007, 345-346: 915
[16] Inoue T. On phenomenological mechanism of transformation plasticity and inelastic behavior of a steel subjected to varying temperature and stress- application of unified transformation-thermo plasticity theory [J]. J. Soc. Mater. Sci. Jpn., 2008, 57: 225
[17] Inoue T. Phenomenological mechanism of transformation plasticity and the constitutive law coupled with thermo-mechanical plasticity [J]. Adv. Mater. Res., 2008, 33-37: 1351
[18] Inoue T. Transformation plasticity-the mechanism and some applications [J]. Mater. Sci. Forum, 2009, 614: 11
[19] Inoue T. Mechanism of transformation plasticity and the unified constitutive equation for transformation-thermo-mechanical plasticity with some applications [J]. Int. J. Microstruct. Mater. Prop., 2010, 5: 319
[20] Inoue T. Mechanics and characteristics of transformation plasticity and metallo-thermo-mechanical process simulation [J]. Proc. Eng., 2011, 10: 3793
[21] Inoue T. Macro-, meso-, and nanoscopic metallo thermo mechanics [J]. J. Phys. IV France, 2004, 120: 3
[22] Denis S. Considering stress-phase transformation interactions in the calculation of heat treatment residual stresses [J]. J. Phys. IV France, 1996, 6: C1-159
[23] Denis S, Archambault P, Aubry C, et al. Modelling of phase transformation kinetics in steels and coupling with heat treatment residual stress predictions [J]. J. Phys. IV France, 1999, 9: Pr9-323
[24] Lee S J, Lee Y K. Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics [J]. Acta Mater., 2008, 56: 1482
[25] Leblond J B, Devaux J, Devaux J C. Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases [J]. Int. J. Plast., 1989, 5: 551
[26] Leblond J B, Devaux J. A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size [J]. Acta Metall., 1984, 32: 137
[27] Liu Y, Qin S W, Hao Q G, et al. Finite element simulation and experimental verification of internal stress of quenched AISI 4140 cylinders [J]. Metall. Mater. Trans., 2017, 48A: 1
[28] De Oliveira W P, Savi M A, Pacheco P M C L. Finite element method applied to the quenching of steel cylinders using a multi-phase constitutive model [J]. Arch. Appl. Mech., 2013, 83: 1013
[29] De Oliveira W P, Savi M A, Pacheco P M C L, et al. Thermomechanical analysis of steel cylinders quenching using a constitutive model with diffusional and non-diffusional phase transformations [J]. Mech. Mater., 2010, 42: 31
[30] Carlone P, Palazzo G S, Pasquino R. Finite element analysis of the steel quenching process: Temperature field and solid-solid phase change [J]. Comput. Math. Appl., 2010, 59: 585
[31] Smoljan B. Prediction of mechanical properties and microstructure distribution of quenched and tempered steel shaft [J]. J. Mater. Process. Technol., 2006, 175: 393
[32] Bok H H, Choi J W, Suh D W, et al. Stress development and shape change during press-hardening process using phase-transformation-based finite element analysis [J]. Int. J. Plast., 2015, 73: 142
[33] Song G S, Liu X H, Wang G D, et al. Numerical Simulation on Carburizing and Quenching of Gear Ring [J]. J. Iron Steel Res., 2007, 14: 47
[34] Chen B, Peng X H, Nong S N, et al. An incremental constitutive relationship incorporating phase transformation with the application to stress analysis for the quenching process [J]. J. Mater. Process. Technol., 2002, 122: 208
[35] Han Q L, Liu G Q, Dong L, et al. FEM simulation of quenching process for dissimilar material welded using steel and titanium alloy [J]. Trans. Mater. Heat Treat., 2007, 28(4): 139
[35] (韩庆礼, 刘国权, 董 雷等. 异种材料淬火过程的有限元模拟 [J]. 材料热处理学报, 2007, 28(4): 139)
[36] Ginzburg V B, translated by Jiang M D, Wang G Z. High-Quality Steel Rolling [M]. Beijing: Metallurgical Industry Press, 2000: 1
[36] (金兹伯格 V B著, 姜明东, 王国栋译. 高精度板带材轧制理论与实践 [M]. 北京: 冶金工业出版社, 2000: 1)
[37] Coret M, Combescure A. A mesomodel for the numerical simulation of the multiphasic behavior of materials under anisothermal loading (application to two low-carbon steels) [J]. Int. J. Mech. Sci., 2002, 44: 1947
[38] Jiang Y, Zeng P, Lou L L. Numerical simulation of quenching process of steel 26Cr2Ni4MoV with thermo-mechano-metallurgical coupling [J]. J. Harbin Inst. Technol., 2002, 34: 302
[38] (蒋 昱, 曾 攀, 娄路亮. 26Cr2Ni4MoV钢淬火过程的三场耦合数值模拟 [J]. 哈尔滨工业大学学报, 2002, 34: 302)
[39] Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels [J]. Acta Metall., 1959, 7: 59
[40] Videau J C, Cailletaud G, Pineau A. Experimental study of the transformation-induced plasticity in a Cr-Ni-Mo-Al-Ti steel [J]. J. Phys. IV France, 1996, 6: C1-465
[41] Coret M, Calloch S, Combescure A. Experimental study of the phase transformation plasticity of 16MND5 low carbon steel induced by proportional and nonproportional biaxial loading paths [J]. Eur. J. Mech., 2004, 23: 823
[42] Greenwood G W, Johnson R H. The deformation of metals under small stresses during phase transformations [J]. Proc. Royal Soc. London, 1965, 283A: 403
[43] Atkins E. Elements of X-ray Diffraction [J]. Phys. Today, 1978, 10: 50
[44] Sun C Y, Zeng P, Lei L P, et al. Experimental extract of transformation plastic strain during phase transformation [J]. J. Plast. Eng., 2007, 14(6): 161
[44] (孙朝阳, 曾 攀, 雷丽萍等. 基于物理模拟的相变塑性应变分离方法 [J]. 塑性工程学报, 2007, 14(6): 161)
[45] Liu Z. Numerical simulation of heat treatment process [M]. Beijing: Science Press, 1996: 119
[45] (刘 庄. 热处理过程的数值模拟 [M]. 北京: 科学出版社, 1996: 119)
[46] Xu X J, Chen G X, Liu C C, et al. Numerical simulation of the stresses evolution during tempering of steel [J]. Heat Treat.Met., 1997, (3): 12
[46] (许学军, 陈国学, 刘春成等. 钢的回火过程中应力演化的数值模拟 [J]. 金属热处理, 1997, (3): 12)
[47] Wang M M. Study on tempering of Mn-Mo-Ni steel for large forgings of nuclear power [D]. Shanghai: Shanghai Jiao Tong University, 2013
[47] (王明敏. 核电大锻件用Mn-Mo-Ni钢的回火研究 [D]. 上海: 上海交通大学, 2013)
[48] Liu G Y, Li M W, Zhang S J. Thermal numerical simulation and experiment in quenching process of medium and heavy plate [J]. J. Iron Steel Res., 2007, 19(8): 51
[48] (刘国勇, 李谋渭, 张少军. 中厚板淬火过程的热力学数值模拟及实验 [J]. 钢铁研究学报, 2007, 19(8): 51)
[49] Fang G, Zeng P. Finite element simulation of metal quenching [J]. Tsinghua Sci. Technol., 2004, 9: 555
[1] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[2] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[3] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[4] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[5] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[6] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[7] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[8] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[9] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[10] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.
[11] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[12] 丘玉萍, 戴豪, 戴洪斌, 王平. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控[J]. 金属学报, 2018, 54(9): 1289-1296.
[13] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
[14] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
[15] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.