Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1569-1580    DOI: 10.11900/0412.1961.2019.00082
  研究论文 本期目录 | 过刊浏览 |
Q&P钢热处理过程有限元法数值模拟模型研究
张清东,林潇,刘吉阳(),胡树山
北京科技大学机械工程学院 北京 100083
Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method
ZHANG Qingdong,LIN Xiao,LIU Jiyang(),HU Shushan
School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(12134 KB)   HTML
摘要: 

以国内典型淬火-分配(Q&P)高强钢——QP980钢为例,进行热处理全过程物理模拟研究,提出一种耦合温度及时间影响的类蠕变应变方程用以描述材料在Q&P热处理分配过程的体积变化,建立考虑淬火温度影响的Q&P热处理两次淬火过程相变动力学方程、相变应变及相变塑性方程,获得了Q&P钢各相的热膨胀系数。根据温度场、组织场、应力场三场耦合原理,基于物理模拟得到的弹塑性增量本构模型,对商业有限元软件ABAQUS用户子程序进行二次开发,建立了针对Q&P热处理全过程的三场耦合数值仿真模型;通过Gleeble热-力模拟试验机上的Q&P热处理实验对模型进行了实验验证,实验结果与数值模拟结果吻合良好。

关键词 Q&P钢热处理数值模拟实验研究    
Abstract

Quenching and partitioning (Q&P) steel is a kind of high strength and toughness steels which has a majority of martensite at room temperature and a certain amount of retained austenite through the quenching and carbon distribution heat treatment process of cold-rolled carbon-silicon-manganese steel. In this work, the typical Q&P high-strength steel, QP980 steel, is taken as an example to carry out the physical simulation study of the whole process of heat treatment. A creep-like strain equation coupled with temperature and time is proposed to describe the volume change of materials during Q&P heat treatment. The phase transformation kinetics equation, phase transformation strain and phase transformation plasticity equation of Q&P heat treatment with the influence of quenching temperature were established, and the thermal expansion coefficient of each phase of Q&P steel was obtained. According to the coupling principles of temperature, microstructure and stress-strain field, a numerical simulation model for the whole process of Q&P heat treatment was developed. In this model, the physical simulation of QP980 steel thermal-elastoplastic incremental constitutive equations are implemented to commercial finite element software ABAQUS as the user subroutines. The model was validated by Q&P heat treatment experiment on Gleeble thermal-mechanical simulator. The calculated values of the models are both in good agreement with the experimental values.

Key wordsQ&P steel    heat treatment    numerical simulation    experimental research
收稿日期: 2019-03-26     
ZTFLH:  TG156.34  
基金资助:国家科技支撑计划项目(No.2011BAE13B05);国家自然科学基金项目(No.51075031)
通讯作者: 刘吉阳     E-mail: b20170270@xs.ustb.edu.cn
Corresponding author: Jiyang LIU     E-mail: b20170270@xs.ustb.edu.cn
作者简介: 张清东,男,1965年生,博士,教授

引用本文:

张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method. Acta Metall Sin, 2019, 55(12): 1569-1580.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00082      或      https://www.ams.org.cn/CN/Y2019/V55/I12/1569

图1  淬火-分配(Q&P) QP980高强钢的连续冷却实验方案及CCT曲线
图2  不同冷却速率淬火后的常温组织
图3  热膨胀实验及相变动力学实验方案
图4  相变塑性实验方案
图5  不同分配温度的Q&P热处理实验加热冷却制度
图6  无应力淬火及回火过程轴向应变随温度变化的关系曲线
图7  第一次淬火过程马氏体体积分数(ξM1)与淬火温度的关系
图8  不同淬火温度下第二次淬火过程前后的组织变化
图9  不同淬火温度Q&P热处理第二次淬火过程的相变动力学曲线
图10  外载作用下马氏体相变过程的宽向应变
图11  相变塑性系数(k)实测值及线性拟合
图12  不同分配温度下Q&P热处理分配过程中的轴向应变

Time / s

Coefficient of primary temperature termCoefficient of quadratic temperature termCoefficient of cubic temperature term

R2

52.98×10-4-6.26×10-44.64×10-40.9220
254.20×10-4-5.74×10-44.73×10-40.9622
453.56×10-4-1.87×10-42.06×10-40.9663
653.23×10-4-7.66×10-49.35×10-50.9900
851.85×10-44.02×10-4-1.69×10-40.9953
1051.65×10-45.59×10-4-3.01×10-40.9964
1256.53×10-48.23×10-4-4.44×10-40.9984
145-4.74×10-41.07×10-3-6.29×10-40.9915
1653.53×10-59.34×10-4-5.21×10-40.98288
185-1.16×10-41.39×10-3-8.35×10-40.9769
195-8.92×10-51.28×10-3-7.49×10-40.96565
表1  约化温度系数的三次多项式拟合结果
Coefficient of equation

Coefficient value

Coefficient of equation

Coefficient value

Coefficient of equation

Coefficient value

p12.65×10-5q1-4.16×10-5w13.26×10-5
p2-5.20×10-7q21.03×10-6w2-7.69×10-7
p33.44×10-9q3-7.17×10-9w35.31×10-9
p4-7.65×10-12q41.62×10-11w4-1.20×10-11
表2  QP980高强钢类蠕变应变方程系数
图13  类蠕变应变计算值与实测值对比
图14  Gleeble上Q&P热处理实验加热冷却加载制度
图15  模型验证实验试样均热区有限元模型
图16  Q&P热处理过程各阶段试样变形模拟值与实测值对比
图17  Q&P热处理各阶段相体积分数随时间的变化
[1] Speer J G, Edmonds D V, Rizzo F C, et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 219
[2] Speer J G, Assun??o F C R, Matlock D K, et al. The "quenching and partitioning" process: Background and recent progress [J]. Mater. Res., 2005, 8: 417
[3] Xu Z Y. New Processes for Steel Heat Treatment [J]. Heat Treatment, 2007(01): 1
[3] (徐祖耀.钢热处理的新工艺 [J]. 热处理, 2007(01): 1)
[4] Khan S A, Bhadeshia H K D. Kinetics of Martensitic transformation in partially bainitic 300M steel [J]. Mater. Sci. Eng., 1990, A129: 257
[5] Bhadeshia H K D H. Carbon content of retained austenite in quenched steels [J]. Met. Sci., 1983, 17: 151
[6] Yamanaka S, Sakanoue T, Yoshii T, et al. Influence of transformation plasticity on the distortion of carburized quenching process of Cr-Mo steel ring [J]. J. Soc. Mater. Sci. Jpn., 1999, 48: 733
[7] Ju D Y, Narazaki M. Simulation and experimental verification of residual stress and distortion during quenching of steel [A]. Proceeding of the 20th ASM Heat Treating Society Conference [C]. St. Louis, MO, USA: ASM International, 2000: 441
[8] Arimoto K, Horino T, Ikuta F, et al. Explanation of the origin of distortion and residual stress in water quenched cylinders using computer simulation [J]. J. ASTM Int., 2006, 3: 253
[9] Inoue T, Yamaguchi T, Wang Z G. Stresses and phase transformations occurring in quenching of carburized steel gear wheel [J]. Mater. Sci. Technol., 1984, 1: 872
[10] Mukai R, Ju D Y. Simulation of carburizing-quenching of a gear. Effect of carbon content on residual stresses and distortion [J]. J. Phys. IV France, 2004, 120: 489
[11] Imatani S, Okuno Y, Inoue T. Experiment and simulation for thick-plate bending by high frequency inductor [J]. Acta Metall. Sin. (Engl. Lett.), 1998, 11: 449
[12] Inoue T, Arimoto K, Ju D Y. Development of heat treatment simulation program "HEARTS"—Theory, strategy, function and some examples [A]. Residual Stresses III: Science and Technology [C], London and New York: Elsevier Applied Science,1992, 1: 226
[13] Inoue T, Arimoto K. Development and implementation of CAE system “HEARTS” for heat treatment simulation based on metallo-thermo-mechanics [J]. J. Mater. Eng. Perform, 1997, 6: 51
[14] Ju D Y, Inoue T. On the material process simulation code COSMAP-simulated examples and its experimental verification for heat treatment process [J]. Key Eng. Mater., 2007, 345-346: 955
[15] Inoue T, Tanaka T, Ju D Y, et al. Transformation plasticity and the effect on quenching process simulation [J]. Key Eng. Mater., 2007, 345-346: 915
[16] Inoue T. On phenomenological mechanism of transformation plasticity and inelastic behavior of a steel subjected to varying temperature and stress- application of unified transformation-thermo plasticity theory [J]. J. Soc. Mater. Sci. Jpn., 2008, 57: 225
[17] Inoue T. Phenomenological mechanism of transformation plasticity and the constitutive law coupled with thermo-mechanical plasticity [J]. Adv. Mater. Res., 2008, 33-37: 1351
[18] Inoue T. Transformation plasticity-the mechanism and some applications [J]. Mater. Sci. Forum, 2009, 614: 11
[19] Inoue T. Mechanism of transformation plasticity and the unified constitutive equation for transformation-thermo-mechanical plasticity with some applications [J]. Int. J. Microstruct. Mater. Prop., 2010, 5: 319
[20] Inoue T. Mechanics and characteristics of transformation plasticity and metallo-thermo-mechanical process simulation [J]. Proc. Eng., 2011, 10: 3793
[21] Inoue T. Macro-, meso-, and nanoscopic metallo thermo mechanics [J]. J. Phys. IV France, 2004, 120: 3
[22] Denis S. Considering stress-phase transformation interactions in the calculation of heat treatment residual stresses [J]. J. Phys. IV France, 1996, 6: C1-159
[23] Denis S, Archambault P, Aubry C, et al. Modelling of phase transformation kinetics in steels and coupling with heat treatment residual stress predictions [J]. J. Phys. IV France, 1999, 9: Pr9-323
[24] Lee S J, Lee Y K. Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics [J]. Acta Mater., 2008, 56: 1482
[25] Leblond J B, Devaux J, Devaux J C. Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases [J]. Int. J. Plast., 1989, 5: 551
[26] Leblond J B, Devaux J. A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size [J]. Acta Metall., 1984, 32: 137
[27] Liu Y, Qin S W, Hao Q G, et al. Finite element simulation and experimental verification of internal stress of quenched AISI 4140 cylinders [J]. Metall. Mater. Trans., 2017, 48A: 1
[28] De Oliveira W P, Savi M A, Pacheco P M C L. Finite element method applied to the quenching of steel cylinders using a multi-phase constitutive model [J]. Arch. Appl. Mech., 2013, 83: 1013
[29] De Oliveira W P, Savi M A, Pacheco P M C L, et al. Thermomechanical analysis of steel cylinders quenching using a constitutive model with diffusional and non-diffusional phase transformations [J]. Mech. Mater., 2010, 42: 31
[30] Carlone P, Palazzo G S, Pasquino R. Finite element analysis of the steel quenching process: Temperature field and solid-solid phase change [J]. Comput. Math. Appl., 2010, 59: 585
[31] Smoljan B. Prediction of mechanical properties and microstructure distribution of quenched and tempered steel shaft [J]. J. Mater. Process. Technol., 2006, 175: 393
[32] Bok H H, Choi J W, Suh D W, et al. Stress development and shape change during press-hardening process using phase-transformation-based finite element analysis [J]. Int. J. Plast., 2015, 73: 142
[33] Song G S, Liu X H, Wang G D, et al. Numerical Simulation on Carburizing and Quenching of Gear Ring [J]. J. Iron Steel Res., 2007, 14: 47
[34] Chen B, Peng X H, Nong S N, et al. An incremental constitutive relationship incorporating phase transformation with the application to stress analysis for the quenching process [J]. J. Mater. Process. Technol., 2002, 122: 208
[35] Han Q L, Liu G Q, Dong L, et al. FEM simulation of quenching process for dissimilar material welded using steel and titanium alloy [J]. Trans. Mater. Heat Treat., 2007, 28(4): 139
[35] (韩庆礼, 刘国权, 董 雷等. 异种材料淬火过程的有限元模拟 [J]. 材料热处理学报, 2007, 28(4): 139)
[36] Ginzburg V B, translated by Jiang M D, Wang G Z. High-Quality Steel Rolling [M]. Beijing: Metallurgical Industry Press, 2000: 1
[36] (金兹伯格 V B著, 姜明东, 王国栋译. 高精度板带材轧制理论与实践 [M]. 北京: 冶金工业出版社, 2000: 1)
[37] Coret M, Combescure A. A mesomodel for the numerical simulation of the multiphasic behavior of materials under anisothermal loading (application to two low-carbon steels) [J]. Int. J. Mech. Sci., 2002, 44: 1947
[38] Jiang Y, Zeng P, Lou L L. Numerical simulation of quenching process of steel 26Cr2Ni4MoV with thermo-mechano-metallurgical coupling [J]. J. Harbin Inst. Technol., 2002, 34: 302
[38] (蒋 昱, 曾 攀, 娄路亮. 26Cr2Ni4MoV钢淬火过程的三场耦合数值模拟 [J]. 哈尔滨工业大学学报, 2002, 34: 302)
[39] Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels [J]. Acta Metall., 1959, 7: 59
[40] Videau J C, Cailletaud G, Pineau A. Experimental study of the transformation-induced plasticity in a Cr-Ni-Mo-Al-Ti steel [J]. J. Phys. IV France, 1996, 6: C1-465
[41] Coret M, Calloch S, Combescure A. Experimental study of the phase transformation plasticity of 16MND5 low carbon steel induced by proportional and nonproportional biaxial loading paths [J]. Eur. J. Mech., 2004, 23: 823
[42] Greenwood G W, Johnson R H. The deformation of metals under small stresses during phase transformations [J]. Proc. Royal Soc. London, 1965, 283A: 403
[43] Atkins E. Elements of X-ray Diffraction [J]. Phys. Today, 1978, 10: 50
[44] Sun C Y, Zeng P, Lei L P, et al. Experimental extract of transformation plastic strain during phase transformation [J]. J. Plast. Eng., 2007, 14(6): 161
[44] (孙朝阳, 曾 攀, 雷丽萍等. 基于物理模拟的相变塑性应变分离方法 [J]. 塑性工程学报, 2007, 14(6): 161)
[45] Liu Z. Numerical simulation of heat treatment process [M]. Beijing: Science Press, 1996: 119
[45] (刘 庄. 热处理过程的数值模拟 [M]. 北京: 科学出版社, 1996: 119)
[46] Xu X J, Chen G X, Liu C C, et al. Numerical simulation of the stresses evolution during tempering of steel [J]. Heat Treat.Met., 1997, (3): 12
[46] (许学军, 陈国学, 刘春成等. 钢的回火过程中应力演化的数值模拟 [J]. 金属热处理, 1997, (3): 12)
[47] Wang M M. Study on tempering of Mn-Mo-Ni steel for large forgings of nuclear power [D]. Shanghai: Shanghai Jiao Tong University, 2013
[47] (王明敏. 核电大锻件用Mn-Mo-Ni钢的回火研究 [D]. 上海: 上海交通大学, 2013)
[48] Liu G Y, Li M W, Zhang S J. Thermal numerical simulation and experiment in quenching process of medium and heavy plate [J]. J. Iron Steel Res., 2007, 19(8): 51
[48] (刘国勇, 李谋渭, 张少军. 中厚板淬火过程的热力学数值模拟及实验 [J]. 钢铁研究学报, 2007, 19(8): 51)
[49] Fang G, Zeng P. Finite element simulation of metal quenching [J]. Tsinghua Sci. Technol., 2004, 9: 555
[1] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[2] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[3] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[4] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[5] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[6] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[7] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[8] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[9] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[10] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.
[11] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[12] 丘玉萍, 戴豪, 戴洪斌, 王平. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控[J]. 金属学报, 2018, 54(9): 1289-1296.
[13] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
[14] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
[15] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.