Please wait a minute...
金属学报  2017, Vol. 53 Issue (9): 1125-1132    DOI: 10.11900/0412.1961.2016.00573
  本期目录 | 过刊浏览 |
基于GA-ELM的铝合金压铸件晶粒尺寸预测
梅益1(), 孙全龙1, 喻丽华1, 王传荣2, 肖华强1
1 贵州大学机械工程学院 贵阳 550025
2 中国石油新疆独山子石化分公司 克拉玛依 833699
Grain Size Prediction of Aluminum Alloy Dies Castings Based on GA-ELM
Yi MEI1(), Quanlong SUN1, Lihua YU1, Chuanrong WANG2, Huaqiang XIAO1
1 College of Mechanical Engineering, Guizhou University, Guiyang 550025, China
2 China Petroleum Xinjiang Dushanzi Petrochemical Corp., Kelamayi 833699, China
引用本文:

梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
Yi MEI, Quanlong SUN, Lihua YU, Chuanrong WANG, Huaqiang XIAO. Grain Size Prediction of Aluminum Alloy Dies Castings Based on GA-ELM[J]. Acta Metall Sin, 2017, 53(9): 1125-1132.

全文: PDF(3139 KB)   HTML
  
摘要: 

为提高铝合金压铸件晶粒尺寸预测的效率和准确率,应用遗传算法-极限学习机(GA-ELM)模型预测晶粒尺寸。ELM的输入层权值矩阵及隐含层阈值矩阵具有随机性,通过GA算法对ELM的输入层权值矩阵和隐含层阈值矩阵进行优化,建立GA-ELM模型。以晶粒尺寸作为输出参数,相关压铸工艺参数作为输入参数,通过压铸生产实验及金相测量获得相应数据,对GA-ELM模型进行实例分析,并与同样使用遗传算法优化的GA-BP神经网络模型和原始ELM模型预测结果进行对比。最后,通过金相组织测量实验验证GA-ELM模型预测结果的可靠性。结果表明,利用GA-ELM模型预测铝合金压铸件晶粒尺寸具有较高的预测精度及预测效率,与其它算法相比,具有一定的优越性。

关键词 铝合金微观组织晶粒尺寸极限学习机GA-ELM模型    
Abstract

Effective grain size prediction for aluminum alloy die castings is of great significance to the rational formulation of die casting process parameters and to the improvement of casting mechanical properties. The traditional grain size prediction method cannot give consideration to both the efficiency and accuracy because of its inherent defects. To improve the efficiency and accuracy of predicting grain size for aluminum alloy die castings, this study proposes a prediction method that is based on the genetic algorithm-extreme learning machine (GA-ELM) model. ELM has the characteristics of few parameter settings, fast learning and good generalization performance, but the algorithm randomly generates the initial input layer weight matrix and the hidden layer threshold matrix, which greatly affects the prediction result. By exploiting GA's excellent global optimization ability, the optimal initial input layer weight matrix and the hidden layer threshold matrix for ELM can be found. The establishment of GA-ELM model can considerably improve the prediction accuracy of ELM model. This study uses grain size as the output parameters and relevant die casting process parameters as the input parameters. The castings produced under different die-casting process parameters are obtained experimentally, and the microstructures of specified sections of key casting positions are analyzed and measured to obtain the average grain size of the sec tions, i.e. the output parameters. The GA-ELM model is trained and tested using these data. To verify the superiority of the GA-ELM model in grain size prediction, this study compares the prediction results of GA-ELM model with the GA-BP neural network model and the original ELM model, and eventually verifies the reliability of GA-ELM model prediction results through metallographic structure measurement experiment. The results show that the GA-ELM model has higher prediction accuracy than the GA-BP neural network model and the original ELM model. Besides, its prediction efficiency is higher than the GA-BP model, while is lower than the original ELM model. With fairly high prediction accuracy and efficiency, the GA-ELM model can meet the actual engineering requirements. Furthermore, its prediction reliability and excellent prediction effect are verified by the results of metallographic structure measurement experiment.

Key wordsaluminum alloy    microstructure    grain size    extreme learning machine (ELM)    GA-ELM model
收稿日期: 2016-12-27     
ZTFLH:  TG146.2  
基金资助:贵州省科学技术基金项目No.20142053
作者简介:

作者简介 梅益,男,1974年生,教授,博士

图1  遗传算法-极限学习机(GA-ELM)算法流程
图2  汽车空压机端盖压铸件几何模型
No. TP / ℃ TI / ℃ VS / (ms-1) VF / (ms-1)
1 190 650 0.2 3
2 200 660 0.3 4
3 210 670 0.4 5
4 220 680 0.5 6
表1  各成型工艺参数及水平设置
图3  汽车空压机端盖接口部位几何模型
No. TP / ℃ TI / ℃ VS / (ms-1) VF / (ms-1) D / μm
1 650 190 0.2 3 250
2 650 200 0.3 4 349
3 650 210 0.4 5 282
4 650 220 0.5 6 303
5 660 190 0.3 5 282
6 660 200 0.2 6 251
7 660 210 0.5 3 313
8 660 220 0.4 4 328
9 670 190 0.4 6 274
10 670 200 0.5 5 351
11 670 210 0.3 4 346
12 670 220 0.2 3 251
13 680 190 0.5 4 245
14 680 200 0.4 3 259
15 680 210 0.3 6 245
16 680 220 0.2 5 280
17 650 190 0.5 3 260
18 650 200 0.4 4 281
19 650 210 0.3 5 294
20 650 220 0.2 6 277
21 660 190 0.5 4 320
22 660 200 0.4 3 227
23 660 210 0.3 6 288
24 660 220 0.2 5 379
25 670 190 0.4 5 268
26 670 200 0.5 5 301
27 670 210 0.2 3 292
28 670 220 0.3 4 320
29 680 190 0.4 6 213
30 680 200 0.5 5 216
31 680 210 0.2 4 280
32 680 220 0.3 3 246
表2  训练集工艺参数实验结果
No. Parameter Setting
1 Number of ELM hidden layer nodes 32
2 Population size 60
3 Maximum iterations 150
4 Crossover possibility 0.8
5 Mutation probability 0.5
6 Objective function The minimum of average relative errors
7 Fitness evaluation method Linear evaluation
8 Value range of weights Wij [-1, 1]
9 Value range of thresholds bi [-1, 1]
10 Terminal condition Maximum number of iterations
表3  GA-ELM参数设置表
No. TP / ℃ TI / ℃ VS / (ms-1) VF / (ms-1) D / μm
1 650 200 0.4 6 271
2 650 210 0.5 5 308
3 650 210 0.5 6 258
4 660 200 0.3 4 270
5 660 210 0.4 3 235
6 670 190 0.5 5 262
表4  测试集工艺参数实验结果
图4  遗传算法进化结果
图5  GA-ELM模型对测试集样本的预测结果与测试集输出真值对比
图6  GA-BP模型对测试集样本的预测结果与测试集输出真值对比
图7  ELM模型对测试集样本的预测结果与测试集输出真值对比
Model index Ea / μm Er / % t / s
GA-ELM 10.2 3.8 47.03
GA-BP 14.4 5.5 107.02
ELM 22.8 8.6 2.23
表5  3种预测模型预测性能对比
图8  汽车空压机端盖接口部位同一截面不同位置的金相组织
[1] Qin P C, Zhang X J.Application of Procast software in die casting's numerical simulation[J]. Hot. Work. Technol., 2010, 39(23): 75(秦鹏程, 张希俊. Procast在压力铸造数值模拟的应用现状[J]. 热加工工艺, 2010, 39(23): 75)
[2] Li S Z.Numerical simulation and processing optimization of large complex aluminum die-casting [D]. Wuhan: Huazhong University of Science and Technology, 2012(李世钊. 大复杂铝合金压铸件成数值模拟及工艺优化 [D]. 武汉: 华中科技大学, 2012)
[3] Xiong M H.CAE technology on filling solidification processes and die casting process of aluminum alloy die casting[J]. Hot. Work. Technol., 2013, 42(15): 63(熊明辉. 铝合金压铸件充型凝固过程及其压铸工艺CAE分析[J]. 热加工工艺, 2013, 42(15): 63)
[4] Yu B.Technology optimization of high press die cast aluminum alloy cylinder cover based on numerical simulation analysis[J]. Found. Technol., 2011, 32: 1109(于波. 基于数值模拟分析的铝合金缸盖罩压铸工艺优化[J]. 铸造技术, 2011, 32: 1109)
[5] Huang X F, Xie R, Tian Z Y, et al.The development and the outlook of the die casting Technology[J]. New Technol. New Proc., 2008, (7): 50(黄晓锋, 谢锐, 田载友等. 压铸技术的发展现状与展望[J]. 新技术新工艺, 2008, (7): 50)
[6] Zi B T, Yao K F, Cui J Z, et al.A study on the artificial neural network model of the solidified grain size of Al-alloy[J]. J. Appl. Sci., 2001, 19: 353(訾炳涛, 姚可夫, 崔建忠等. 铝合金凝固晶粒尺寸的人工神经网络研究[J]. 应用科学学报, 2001, 19: 353)
[7] Liu B, Tang A T, Pan F S, et al.A model for predicting grain sizes of As-cast Mg-Al-Ca alloys based on an artificial neural network with parameter optimization[J]. Mater. Rev., 2011, 25(9): 117(刘彬, 汤爱涛, 潘复生等. 基于参数优选的人工神经网络的Mg-Al-Ca系铸态合金晶粒尺寸预测模型[J]. 材料导报, 2011, 25(9): 117)
[8] Tang J L, Cai C Z, Xiao T T, et al.Application of support vector regression for Zr-2 alloy grain size prediction[J]. Trans. Mater. Heat Treat., 2013, 34(2): 180(唐江凌, 蔡从中, 肖婷婷等. 支持向量回归在Zr-2合金晶粒尺寸预测中的应用[J]. 材料热处理学报, 2013, 34(2): 180)
[9] Huang G B, Zhu Q Y, Siew C K.Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70: 489
[10] Han Y B.Gas emission prediction based on GA-ELM[J]. Saf. Coal. Min., 2015, 46(4): 166(韩义波. 基于GA-ELM的瓦斯涌出量预测[J]. 煤矿安全, 2015, 46(4): 166)
[11] Zhang X Y, Huang Q Q, Yin Z P, et al.Establishing a parametric flight loads identification method with GA-ELM model[J]. Adv. Aeronaut. Sci. Eng., 2014, 5: 497(张夏阳, 黄其青, 殷之平等. 基于GA-ELM的飞行载荷参数识别[J]. 航空工程进展, 2014, 5: 497)
[12] Wang X C, Shi F, Yu L, et al.43 Cases Analysis Based on MATLAB Neural Network [M]. Beijing: Beihang University Press, 2013: 243(王小川, 史峰, 郁磊等. MATLAB神经网络43个案例分析 [M]. 北京: 北京航空航天大学出版社, 2013: 243)
[13] Shamshirband S, Mohammadi K, Yee P L, et al.A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation[J]. Renew. Sustain. Energy Rev., 2015, 52: 1031
[14] Sajjadi S, Shamshirband S, Alizamir M, et al.Extreme learning machine for prediction of heat load in district heating systems[J]. Energy Build., 2016, 122: 222
[15] Wang J, Bi H Y.A new extreme learning machine optimized by PSO[J]. J. Zhengzhou Univ.(Nat. Sci. Ed.), 2013, 45(1): 100(王杰, 毕浩洋. 一种基于粒子群优化的极限学习机[J]. 郑州大学学报(理学版), 2013, 45(1): 100)
[16] Cao Z Y, Xia J C, Zhang M, et al.Optimization of gear blank preforms based on a new R-GPLVM model utilizing GA-ELM[J]. Knowl.-Based Syst., 2015, 83: 66
[17] Choudhury T A, Berndt C C, Man Z H.An extreme learning machine algorithm to predict the in-flight particle characteristics of an atmospheric plasma spray process[J]. Plasma Chem. Plasma Process., 2013, 33: 993
[18] Zhu W L.Application research of BP neural network based on genetic algorithm in multi-objective optimization [D]. Harbin: Harbin University of Science and Technology, 2009(朱文龙. 基于遗传算法的BP神经网络在多目标优化中的应用研究 [D]. 哈尔滨: 哈尔滨理工大学, 2009)
[19] Liu X L, Zhao X S, Lu F, et al.A GA-SVM based model for throwing rate prediction in the open-pit cast blasting[J]. J. China Coal Soc., 2012, 37: 1999(刘希亮, 赵学胜, 陆锋等. 基于GA-SVM的露天矿抛掷爆破抛掷率预测[J]. 煤炭学报, 2012, 37: 1999)
[20] Maity S P, Kundu M K.Genetic algorithms for optimality of data hiding in digital images[J]. Soft Comput., 2009, 13: 361
[21] Gu W, Li J Y, Wang Y D.Effect of grain size and Taylor factor on the transverse mechanical properties of 7050 aluminium alloy extrusion profile after over-aging[J]. Acta Metall. Sin., 2016, 52: 51(顾伟, 李静媛, 王一德. 晶粒尺寸及Taylor因子对过时效态7050铝合金挤压型材横向力学性能的影响[J]. 金属学报, 2016, 52: 51)
[22] Zhou J, Li X B, Shi X Z, et al.Predicting pillar stability for underground mine using Fisher discriminant analysis and SVM methods[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 2734
[23] Wu M W, Xiong S M.Microstructure simulation of high pressure die cast magnesium alloy based on modified CA method[J]. Acta Metall. Sin., 2010, 46: 1534(吴孟武, 熊守美. 基于改进CA方法的压铸镁合金微观组织模拟[J]. 金属学报, 2010, 46: 1534)
[24] Huang G B, Ding X J, Zhou H M.Optimization method based extreme learning machine for classification[J]. Neurocomputing2010, 74: 155
[25] Jiang X P, Dai Y J, Hong B.SVM model based on GA optimization for inertial prediction[J]. J. Nanjing Univ. Sci. Technol., 2011, 35(suppl.): 34(姜学鹏, 戴宇进, 洪贝. 基于遗传算法优化SVM模型的惯性器件故障预报[J]. 南京理工大学学报, 2011, 35(增刊): 34)
[26] Recker D, Franzke M, Hirt G, et al.Grain size prediction during open die forging processes[J]. Metall. Ital., 2010, 102(9): 29
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[6] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[7] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[8] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[9] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[10] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[11] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[12] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[13] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[14] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[15] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.