|
|
Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究 |
陈瑞1, 许庆彦1( ), 郭会廷2, 夏志远2, 吴勤芳2, 柳百成1 |
1 清华大学材料学院先进成形制造教育部重点实验室 北京 100084 2 明志科技有限公司 苏州 215006 |
|
Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process |
Rui CHEN1, Qingyan XU1( ), Huiting GUO2, Zhiyuan XIA2, Qinfang WU2, Baicheng LIU1 |
1 Key Laboratory for Advanced Materials Processing Technology (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 2 Mingzhi Technology Co. Ltd., Suzhou 215006, China |
引用本文:
陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
Rui CHEN,
Qingyan XU,
Huiting GUO,
Zhiyuan XIA,
Qinfang WU,
Baicheng LIU.
Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process[J]. Acta Metall Sin, 2017, 53(9): 1110-1124.
[1] | Y?ld?r?m M, ?zyürek D.The effects of Mg amount on the microstructure and mechanical properties of Al-Si-Mg alloys[J]. Mater. Des., 2013, 51: 767 | [2] | Chen R, Shi Y F, Xu Q Y, et al.Effect of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15Fe alloy[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1645 | [3] | Ceschini L, Morri A, Morri A, et al.Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy[J]. Mater. Des., 2009, 304: 4525 | [4] | Samuel A M, Samuel F H.A metallographic study of porosity and fracture behavior in relation to the tensile properties in 319.2 end chill castings[J]. Metall. Mater. Trans., 1995, 26A: 2359 | [5] | Shivkumar S, Ricci S, Keller C, et al.Effect of solution treatment parameters on tensile properties of cast aluminum alloys[J]. J. Heat. Treating, 1990, 8: 63 | [6] | Myhr O R, Grong ?.Modelling of non-isothermal transformations in alloys containing a particle distribution[J]. Acta Mater., 2000, 48: 1605 | [7] | Myhr O R, Grong ?, Andersen S J.Modelling of the age hardening behaviour of Al-Mg-Si alloys[J]. Acta Mater., 2001, 49: 65 | [8] | Bahrami A, Miroux A, Sietsma J.An age-hardening model for Al-Mg-Si alloys considering needle-shaped precipitates[J]. Metall. Mater. Trans., 2012, 43A: 4445 | [9] | Hollomon J H.Tensile deformation[J]. Trans. Metall. Soc. AIME, 1945, 162: 269 | [10] | Ludwigson D C.Modified stress-strain relation for FCC metals and alloys[J]. Mech. Transact., 1971, 2: 2825 | [11] | Voce E.The relationship between stress and strain for homogeneous deformation[J]. J. Inst. Met., 1948, 74: 537 | [12] | Cheng L M, Poole W J, Embury J D, et al.The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030[J]. Metall. Mater. Trans., 2003, 34A: 2473 | [13] | Myth O R, Grong ?, Pedersen K O.A combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys[J]. Metall. Mater. Trans., 2010, 41A: 2276 | [14] | Bahrami A, Miroux A, Sietsma J.Modeling of strain hardening in the aluminum alloy AA6061[J]. Metall. Mater. Trans., 2013, 44A: 2409 | [15] | Zhao Q L, Holmedal B.Modelling work hardening of aluminium alloys containing dispersoids[J]. Philos. Mag., 2013, 93: 3142 | [16] | Fribourg G, Bréchet Y, Deschamps A, et al.Micorstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminum alloy[J]. Acta Mater., 2011, 59: 3621 | [17] | Bardel D, Perez M, Nelias D, et al.Cyclic behaviour of a 6061 aluminium alloy: Coupling precipitation and elastoplastic modeling[J]. Acta Mater., 2015, 83: 256 | [18] | Drouzy M, Jacob S, Richard M.Interpretation of tensile results by means of quality index and probable yield strength[J]. Int. J. Cast Met. Res., 1980, 5: 43 | [19] | Tiryakio?lu M, Staley J T, Campbell J.Evaluating structural integrity of cast Al-7Si-Mg alloys via work hardening characteristics II. A new quality index[J]. Mater. Sci. Eng., 2004, A368: 231 | [20] | Mondal C, Singh A K, Mukhopadhyay A K, et al.Tensile flow and work hardening behavior of hot cross-rolled AA701 aluminum alloy sheets[J]. Mater. Sci. Eng., 2013, A577: 87 | [21] | Chen R, Xu Q Y, Liu B C.Modelling investigation of precipitation kinetics and strengthening for needle/rod-shaped precipitates in Al-Mg-Si alloys[J]. Acta Metall. Sinc., 2016, 52: 987(陈瑞, 许庆彦, 柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究[J]. 金属学报, 2016, 52: 987) | [22] | Du Q, Poole W J, Wells M A.A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys[J]. Acta Mater., 2012, 60: 3830 | [23] | Chen Q, Jeppsson J, ?gren J.Analytical treatment of diffusion during precipitate growth in multicomponent systems[J]. Acta Mater., 2008, 56: 1890 | [24] | Bardel D, Perez M, Nelias D, et al.Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy[J]. Acta Mater., 2014, 62: 129 | [25] | Ardell A J.Precipitation hardening[J]. Metall. Trans., 1985, 16A: 2131 | [26] | Zhao Q L, Holmedal B.Modelling work hardening of aluminium alloys containing dispersoids[J]. Philos. Mag., 2013, 93: 3142 | [27] | Callister W D, David G R.Fundamentals of Materials Science and Engineering: An integrated approach[M]. 4th Ed., New York: John Wiley & Sons Inc, 2012: 1 | [28] | Proudhon H, Poole W J, Wang X, et al.The role of internal stresses on the plastic deformation of the Al-Mg-Si-Cu alloy AA6111[J]. Philos. Mag., 2008, 88: 621 | [29] | Simar A, Bréchet Y, de Meester B, et al. Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6[J]. Acta Mater., 2007, 55: 6133 | [30] | Sinclair C W, Poole W J, Bréchet Y.A model for the grain size dependent work hardening of copper[J]. Scr. Mater., 2006, 55: 739 | [31] | Zolotorevsky N Y, Solonin A N, Churyumov A Yu, et al.Study of work hardening of quenched and naturally aged Al-Mg and Al-Cu alloys[J]. Mater. Sci. Eng., 2009, A502: 111 | [32] | Chen R, Xu Q Y, Wu Q F, et al.Nucleation model and dendrite growth simulation in solidification process of Al-7Si-Mg alloy[J]. Acta Metall. Sinc., 2015, 51: 733(陈瑞, 许庆彦, 吴勤芳等. Al-7Si-Mg合金凝固过程形核模型建立及枝晶生长过程数值模拟[J]. 金属学报, 2015, 51: 733) | [33] | Liu F, Yu F X, Zhao D Z, et al.Transmission electron microscopy study of precipitates in an artificially aged Al-12.7Si-0.7Mg alloy[J]. Mater. Charact., 2015, 107: 211 | [34] | Liu G, Zhang G J, Ding X D, et al.Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc-or rod/needle-shaped precipitates[J]. Mater. Sci. Eng., 2003, A344: 113 | [35] | Chomsaeng N, Haruta M, Chairuangsri T, et al.HRTEM and ADF-STEM of precipitates at peak-ageing in cast A356 aluminium alloy[J]. J. Alloys Compd., 2010, 496: 478 | [36] | Son S K, Matsumura S, Fukui K, et al.The compositions of metastable phase precipitates observed at peak hardness condition in an Al-Mg-Si alloy[J]. J. Alloys Compd., 2011, 509: 241 | [37] | Wang X, Embury J D, Poole W J, et al.Precipitation strengthening of the aluminum alloy AA6111[J]. Metall. Mater. Trans., 2003, 34A: 2913 | [38] | Sj?lander E, Seifeddine S, Svensson I L.Modelling yield strength of heat treated Al-Si-Mg casting alloys[J]. Int. J. Cast Metal. Res., 2011, 24: 338 | [39] | Brown L M, Stobbs W M.The work-hardening of cooper-silica[J]. Philos. Mag., 1971, 23: 1185 | [40] | Andersen S J, Marioara C D, Fr?seth A, et al.Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al-Mg-Si alloy system and its relation to the β' and β" phases[J]. Mater. Sci. Eng., 2005, A390: 127 | [41] | Ceschini L, Morri A, Toschi S, et al.Microstructural and mechanical properties characterization of heat treated and overaged cast A354 alloy with various SDAS at room and elevated temperature[J]. Mater. Sci. Eng., 2015, A648: 340 | [42] | Haghdadi N, Zarei-Hanzaki A, Roostaei Ali A, et al.Evaluating the mechanical properties of a thermomechanically processed unmodified A356 Al alloy employing shear punch testing method[J]. Mater. Des., 2013, 43: 419 | [43] | Maisonnette D, Suery M, Nelias D, et al.Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy[J]. Mater. Sci. Eng., 2011, A528: 2718 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|