Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1025-1035    DOI: 10.11900/0412.1961.2015.00610
  论文 本期目录 | 过刊浏览 |
X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*
李学达1(),尚成嘉2,韩昌柴3,范玉然4,孙建波1
1) 中国石油大学(华东)机电工程学院, 青岛 266580
2) 北京科技大学材料科学与工程学院, 北京 100083
3) 中国石油西气东输管道公司, 上海 200120
4) 中国石油天然气管道科学研究院, 廊坊 065000
INFLUENCE OF NECKLACE-TYPE M-A CONSTITU-ENT ON IMPACT TOUGHNESS AND FRACTUREMECHANISM IN THE HEAT AFFECTED ZONE OF X100 PIPELINE STEEL
Xueda LI1(),Chengjia SHANG2,Changchai HAN3,Yuran FAN4,Jianbo SUN1
1 College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580, China
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
3 Petroleum China West East Gas Pipeline Company, Shanghai 200120, China
4 China Petroleum Pipeline Research Institute, Langfang 065000, China
引用本文:

李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
Xueda LI, Chengjia SHANG, Changchai HAN, Yuran FAN, Jianbo SUN. INFLUENCE OF NECKLACE-TYPE M-A CONSTITU-ENT ON IMPACT TOUGHNESS AND FRACTUREMECHANISM IN THE HEAT AFFECTED ZONE OF X100 PIPELINE STEEL[J]. Acta Metall Sin, 2016, 52(9): 1025-1035.

全文: PDF(2200 KB)   HTML
摘要: 

利用示波冲击试验机对X100管线钢直缝埋弧焊实际焊接接头热影响区不同位置处的冲击韧性进行了测试. 结果表明, 当缺口穿过不完全重结晶粗晶区(ICCGHAZ)时冲击韧性很低(平均为51 J), 而当缺口不穿过ICCGHAZ时冲击韧性则高达183 J. 还利用Gleeble热模拟试验机对热影响区不同区域的组织进行了模拟, 得到均一组织的粗晶区(CGHAZ), 细晶区(FGHAZ)和不完全重结晶区(ICHAZ)的冲击韧性较高, 平均分别为244, 164和196 J, 而ICCGHAZ的冲击韧性只有32 J. 因此, ICCGHAZ是导致冲击韧性骤降的主要原因. ICCGHAZ由粗大的原奥氏体晶粒及沿晶界呈链状分布的马氏体-奥氏体(M-A)组元构成, 晶粒内部为粗大的粒状贝氏体或者上贝氏体. 断口分析表明, ICCGHAZ是整个断面的起裂源, 且裂纹扩展过程中M-A组元易成为解理刻面的起裂源. 示波冲击结果显示, ICCGHAZ的存在使得起裂功显著降低. 对断口下方二次裂纹的研究表明, CGHAZ处的断裂机制为形核控制型, 而在ICCGHAZ处则为扩展控制型. 因此, ICCGHAZ中链状M-A组元的存在是导致热影响区韧性恶化的根本原因, 并且使得断裂行为和断裂机制发生显著变化.

关键词 管线钢热影响区(HAZ)链状M-A组元冲击韧性断裂机制    
Abstract

After decades of development, mechanical properties of pipeline steels have a good combination of strength and toughness. But after welding, in the heat affected zone (HAZ), microstructure of the base plate was erased by the welding thermal cycle. Several subzones with different microstructures were formed in the HAZ due to different thermal histories they went through. Toughness of the HAZ varies due to the heterogeneous microstructure. In this work, toughness of the HAZ of X100 pipeline steel was examined with two notch locations. Low toughness of 51 J was obtained when the notch encountered intercritically reheated coarsen-grained (ICCG) HAZ and high toughness of 183 J when the notch did not contain ICCGHAZ. Meanwhile, different sub-zones in the HAZ were simulated using Gleeble thermal simulation machine. Simulated coarsen-grained (CG) HAZ, fine-grained (FG) HAZ and intercritically reheated (IC) HAZ with uniform microstructure had good toughness of 244, 164 and 196 J, respectively. In contrast, toughness of simulated ICCGHAZ was only 32 J. Therefore, ICCGHAZ consisting of coarse granular/upper bainite and necklace-type martensite-austenite (M-A) constituent along grain boundaries was proved to be the primary reason for low toughness. Instrumented Charpy impact test results showed that ICCGHAZ could notably embrittle the sample and lower the crack initiation energy. Characterization on the fracture surfaces of the as-fractured Charpy impact specimens showed that ICCGHAZ was found to be the crack initiation site of the whole fracture, and M-A constituent in the ICCGHAZ was characterized as cleavage facet initiation. Fracture mechanisms in the CGHAZ and ICCGHAZ were separately investigated using EBSD. The results showed that necklace-type M-A constituent in the ICCGHAZ notably increased the frequency of cleavage microcracks nucleation. Fracture mechanism changed from nucleation controlled in the CGHAZ to propagation controlled in the ICCGHAZ due to the existence of necklace-type M-A constituent. Therefore, the formation of necklace-type M-A constituent in the ICCGHAZ could not only cause notable drop of toughness in the HAZ, but also change the fracture behavior/mechanism. Hence, research on how to control the distribution status of M-A constituent in the ICCGHAZ is the key to improve the toughness of a weld joint.

Key wordspipeline steel    heat affected zone (HAZ)    necklace-type M-A constituent    Charpy impact toughness    fracture mechanism
收稿日期: 2015-11-27     
基金资助:* 国家重点基础研究发展计划项目2010CB630801, 中国博士后科学基金项目2015M582159和青岛市博士后应用研究项目2015240资助
图1  焊接接头的形状及冲击试样取样位置示意图, 焊接接头的宏观OM像, 冲击缺口加工位置及EBSD样品取样示意图, EBSD样品切割面示意图以及EBSD样品图
图2  热循环曲线示意图
图3  X100管线钢母材, CGHAZ, FGHAZ, ICHAZ, ICCGHAZ及焊缝金属的显微组织
图4  ICCGHAZ组织的详细表征
Sample Position Charpy impact energy Average
Real weld joint Base plate 255 228 254 268 251
Notch I 211 174 229 119 183
Notch II 38 51 64 50 51
Weld metal 87 82 78 80 82
Simulated CGHAZ 268 259 206 243 244
sample FGHAZ 163 154 179 159 164
ICHAZ 178 212 169 224 196
ICCGHAZ 28 30 36 33 32
表1  X100管线钢母材、热影响区、焊缝金属及模拟的热影响区各组织的冲击韧性
图5  热模拟CGHAZ, FGHAZ, ICHAZ和ICCGHAZ的OM像
图6  I号和II号样品断口表面的宏观OM像及2个样品的示波冲击载荷-吸收功曲线
图7  I 号和II 号样品断口表面的SEM像
图8  II 号样品整个断口的起裂源在不同放大倍数下的SEM像
图9  CGHAZ断口表面下方二次微裂纹形貌的表征
图10  ICCGHAZ断口表面下方二次微裂纹形貌的表征
[1] Shang C J, Wang X X, Liu Q Y, Fu J Y.In: Gray J M ed., Proceedings of the International Seminar on Welding of High Strength Pipeline Steel, Araxa, Brazil: TMS, 2011: 435
[2] Shang C J, Li X D, Nie W J, Wu S J.In: Deardo A ed., Proceedings of Recent Developments in High Strength Steels for Energy Applications, Pittsburgh, USA: MS&T, 2012: 892
[3] Matsuda F, Fukada Y, Okada H, Shiga C, Ikeuchi K, Horii Y, Shiwaku T, Suzuki S.Welding World, 1996; 37: 134
[4] Fairchild D P.In Koo J Y ed., Proceedings of Welding Metallurgy of Structural Steels, Warrendale, Pennsylvania, USA: TMS-AIME, 1987: 303
[5] Lambert A, Drillet J, Gourgues A F, Sturel T, Pineau A.Sci Technol Welding Joining, 2000; 5: 168
[6] You Y, Shang C J, Nie W J, Subramanian S.Mater Sci Eng, 2012; A558: 692
[7] Davis C L, King J E.Metall Mater Trans, 1994; 25A: 563.
[8] Mohseni P, Solberg J K, Karlsen M, Akselsen O M, ?stby E.Metall Mater Trans, 2014; 45A: 384
[9] Li Y, Baker T N.Mater Sci Technol, 2010; 26: 1029
[10] Chen J H, Kikuta Y, Araki T, Yoneda M, Matsuda Y.Acta Metall, 1984; 32: 1779
[11] Lambert-Perlade A, Gourgues A F, Besson J, Sturel T, Pineau A.Metall Mater Trans, 2004; 35A: 1039
[12] Thompson A W, Knott J F.Metall Trans, 1993; 24A: 523
[13] Curry D A.Met Sci, 1980; 14: 319
[14] Fairchild D P, Howden D G, Clark W A T.Metall Mater Trans, 2000; 31A: 641
[14] Fairchild D P, Howden D G, Clark W A T.Metall Mater Trans, 2000; 31A: 641
[15] Ritchie R O, Knott J F, Rice J R.J Mech Phys Solids, 1973; 21: 395
[16] Griffiths J R, Owen D R J.J Mech Phys Solids, 1971; 19: 419
[17] Bouyne E, Flower H M, Lindley T C, Pineau A.Scr Mater, 1998; 39: 295
[18] Lin T, Evans A G, Ritchie R O.Acta Metall, 1986; 34: 2205
[19] Guo A M,Misra R D K, Liu J B, Chen L, He X L, Jansto S J.Mater Sci Eng, 2010; A527: 6440
[20] Nohava J, Hausild P, Karlik M, Bompard P.Mater Charact, 2003; 49: 211
[21] Venegas V, Caleyo F, Gonzalez J L, Baudin T, Hallen J M, Penelle R.Scr Mater, 2005; 52: 147
[22] Jian H G, Jiang F, Wei L L, Zheng X Y, Wen K.Mater Sci Eng, 2010; A527: 5879
[23] Li X D, Fan Y R, Ma X P, Subramanian S V, Shang C J.Mater Des, 2015; 67: 457
[24] Li X D, Ma X P, Subramanian S V, Shang C J, Misra R D K.Mater Sci Eng, 2014; A616: 141
[25] You Y, Shang C J, Chen L, Subramanian S.Mater Des, 2013; 43: 485
[26] Pineau A.Int J Fract, 2006; 138: 139
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[4] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[5] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[6] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[7] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[8] 朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12): 1592-1604.
[9] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[10] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[11] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[12] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[13] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[14] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[15] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.