|
|
高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学 |
李学达( ), 李春雨, 曹宁, 林学强, 孙建波 |
中国石油大学(华东) 材料科学与工程学院 青岛 266580 |
|
Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel |
LI Xueda( ), LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo |
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China |
引用本文:
李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
Xueda LI,
Chunyu LI,
Ning CAO,
Xueqiang LIN,
Jianbo SUN.
Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. Acta Metall Sin, 2021, 57(8): 967-976.
1 |
Feng Y R, Ji L K, Li W W, et al. Progress and prospects of research and application of X80 pipeline steel and steel pipe in China [J]. Oil Gas Storage Transp., 2020, 39: 612
|
1 |
冯耀荣, 吉玲康, 李为卫等. 中国X80管线钢和钢管研发应用进展及展望 [J]. 油气储运, 2020, 39: 612
|
2 |
Xia D X, Wang X L, Li X C, et al. Properties and microstructure of third generation X90 pipeline steel [J]. Acta Metall. Sin., 2013, 49: 271
|
2 |
夏佃秀, 王学林, 李秀程等. X90级别第三代管线钢的力学性能与组织特征 [J]. 金属学报, 2013, 49: 271
|
3 |
Shang C J, Wang X M, Yang S W, et al. Microstructure refinement of high strength low carbon bainitic steel [J]. Acta Metall. Sin., 2003, 39: 1019
|
3 |
尚成嘉, 王学敏, 杨善武等. 高强度低碳贝氏体钢的工艺与组织细化 [J]. 金属学报, 2003, 39: 1019
|
4 |
Shang C J, Wang X X, Liu Q Y, et al. Weldability of higher niobium X80 pipeline steel [A]. Proceedings of International Seminar on Welding of High Strength Pipeline Steels [C]. Araxa, Brazil: TMS, 2011: 435
|
5 |
Chen Y Q, Du Z Y, Xu L H. Microstructure and mechanical properties of heat affected zone for X80 pipeline steel [J]. Trans. China Weld. Inst., 2010, 31(5): 101
|
5 |
陈延清, 杜则裕, 许良红. X80管线钢焊接热影响区组织和性能分析 [J]. 焊接学报, 2010, 31(5): 101
|
6 |
Li X D. Study on the weldability of the third generation pipeline steels [D]. Beijing: University of Science & Technology Beijing, 2015
|
6 |
李学达. 第三代管线钢的焊接性能研究 [D]. 北京: 北京科技大学, 2015
|
7 |
Miao C L, Shang C J, Wang X M, et al. Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content [J]. Acta Metall. Sin., 2010, 46: 541
|
7 |
缪成亮, 尚成嘉, 王学敏等. 高Nb X80管线钢焊接热影响区显微组织与韧性 [J]. 金属学报, 2010, 46: 541
|
8 |
Nie W J, Shang C J, You Y, et al. Microstructure and toughness of the simulated welding heat affected zone in X100 pipeline steel with high deformation resistance [J]. Acta Metall. Sin., 2012, 48: 797
|
8 |
聂文金, 尚成嘉, 由 洋等. 抗变形X100管线钢模拟焊接热影响区的组织与韧性研究 [J]. 金属学报, 2012, 48: 797
|
9 |
Matsuda F, Fukada Y, Okada H, et al. Review of mechanical and metallurgical investigations of martensite-austenite constituent in welded joints in Japan [J]. Weld. World, 1996, 37: 134
|
10 |
Shi Y W, Han Z X. Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel [J]. J. Mater. Process. Technol., 2008, 207: 30
|
11 |
Lan L Y, Qiu C L, Zhao D W, et al. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel [J]. Mater. Sci. Eng., 2011, A529: 192
|
12 |
Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence [J]. Metall. Mater. Trans., 1994, 25A: 563
|
13 |
Li X D, Shang C J, Han C C, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 1025
|
13 |
李学达, 尚成嘉, 韩昌柴等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响 [J]. 金属学报, 2016, 52: 1025
|
14 |
Li X D, Ma X P, Subramanian S V, et al. Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel [J]. Mater. Sci. Eng., 2014, A616: 141
|
15 |
You Y, Shang C J, Chen L, et al. Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone [J]. Mater. Des., 2013, 43: 485
|
16 |
Di X J, An X, Cheng F J, et al. Effect of martensite-austenite constituent on toughness of simulated inter-critically reheated coarse-grained heat-affected zone in X70 pipeline steel [J]. Sci. Technol. Weld. Join., 2016, 21: 366
|
17 |
Li X D, Fan Y R, Ma X P, et al. Influence of martensite-austenite constituents formed at different intercritical temperatures on toughness [J]. Mater. Des., 2015, 67: 457
|
18 |
Zhang X G, Miyamoto G, Toji Y, et al. Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy [J]. Acta Mater., 2018, 144: 601
|
19 |
Zhang X G, Miyamoto G, Kaneshita T, et al. Growth mode of austenite during reversion from martensite in Fe-2Mn-1.5Si-0.3C alloy: A transition in kinetics and morphology [J]. Acta Mater., 2018, 154: 1
|
20 |
Nakada N, Tsuchiyama T, Takaki S, et al. Temperature dependence of austenite nucleation behavior from lath martensite [J]. ISIJ Int., 2011, 51: 299
|
21 |
Nakada N, Tsuchiyama T, Takaki S, et al. Variant selection of reversed austenite in lath martensite [J]. ISIJ Int., 2007, 47: 1527
|
22 |
Xie Z J, Han G, Zhou W H, et al. A novel multi-step intercritical heat treatment induces multi-phase microstructure with ultra-low yield ratio and high ductility in advanced high-strength steel [J]. Scr. Mater., 2018, 155: 164
|
23 |
Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59: 4002
|
24 |
Xie Z J, Shang C J, Subramanian S V, et al. Atom probe tomography and numerical study of austenite stabilization in a low carbon low alloy steel processed by two-step intercritical heat treatment [J]. Scr. Mater., 2017, 137: 36
|
25 |
Fairchild D P, Macia M L, Bangaru N V, et al. Girth welding development for X120 linepipe [A]. Proceedings of the 13th International Offshore and Polar Engineering Conference [C]. Hawaii: ISOPE-2003, 2003: 26
|
26 |
Zhong Y, Xiao F R, Zhang J W, et al. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel [J]. Acta Mater., 2006, 54: 435
|
27 |
Guo Z, Lee C S, Morris Jr J W. On coherent transformations in steel [J]. Acta Mater., 2004, 52: 5511
|
28 |
Gourgues A F, Flower H M, Lindley T C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures [J]. Mater. Sci. Technol., 2000, 16: 26
|
29 |
Li X D, Ma X P, Subramanian S V, et al. EBSD characterization of secondary microcracks in the heat affected zone of a X100 pipeline steel weld joint [J]. Int. J. Fract., 2015, 193: 131
|
30 |
You Y, Wang X M, Shang C J. Influence of austenitizing temperature on the microstructure and impact toughness of a high strength low alloy HSLA100 steel [J]. Acta Metall. Sin., 2012, 48: 1290
|
30 |
由 洋, 王学敏, 尚成嘉. 奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响 [J]. 金属学报, 2012, 48: 1290
|
31 |
Zhang X G, Miyamoto G, Furuhara T. Effects of heating rate on microstructure of reverted austenite [J]. Iron Steel, 2019, 54(2): 83
|
31 |
张献光, 宫本吾郎, 古原忠. 加热速率对逆转变奥氏体微观组织的影响 [J]. 钢铁, 2019, 54(2): 83
|
32 |
Li X D, Shang C J, Ma X P, et al. Elemental distribution in the martensite-austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel [J]. Scr. Mater., 2017, 139: 67
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|