Please wait a minute...
金属学报  2021, Vol. 57 Issue (8): 967-976    DOI: 10.11900/0412.1961.2020.00287
  研究论文 本期目录 | 过刊浏览 |
高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学
李学达(), 李春雨, 曹宁, 林学强, 孙建波
中国石油大学(华东) 材料科学与工程学院 青岛 266580
Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel
LI Xueda(), LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
引用本文:

李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
Xueda LI, Chunyu LI, Ning CAO, Xueqiang LIN, Jianbo SUN. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. Acta Metall Sin, 2021, 57(8): 967-976.

全文: PDF(26150 KB)   HTML
摘要: 

利用Gleeble热模拟以及电子背散射衍射(EBSD)技术,研究了高强管线钢焊接临界再热粗晶区(ICCGHAZ)中逆转奥氏体(γr)在不同第二道次峰值温度(760、800和840℃)下的逆相变规律及其晶体学关系。结果表明,在3个峰值温度下形成的γr体积分数依次为4.1%、8.9%和25.2%,γr优先在第一道次粗晶区的原奥氏体晶界(PAGB)处形核,其次是原奥氏体晶粒(γp)内板条束(block)的交界处。在极快的焊接加热速率下,γr倾向于以块状形式长大。晶体学研究表明,γr在PAGB处的逆相变不是自由形核,而是依托于PAGB一侧γp的晶体学取向按照近似K-S关系通过逆相变而形成,而与另一侧的γp没有确定的晶体学关系。第二道次峰值温度较低(760℃)时,γr在PAGB处形核后向非K-S关系一侧的晶粒内部长大,γr呈链状分布于PAGB处。随峰值温度的升高(800和840℃),γr向PAGB两侧同时生长。分析表明,γr在第二道次加热过程中的逆相变行为对其在后续冷却过程中的相变过程、终态组织及其韧性等有重要影响。

关键词 高强管线钢临界再热粗晶区逆转奥氏体晶体学逆相变    
Abstract

Low carbon microalloyed high-strength pipeline steels processed by the thermomechanical controlled process have a good strength-toughness combination. However, after welding, the microstructure and mechanical properties of the heat-affected zone (HAZ) become deteriorated. Previous studies show that martensite-austenite (M-A) constituent formed in the HAZ is a key factor that lowers the toughness, especially necklace-type M-A constituent formed in the intercritically reheated coarse-grained HAZ (ICCGHAZ). However, the phase transformation mechanism of necklace-type M-A constituent in the ICCGHAZ is unclear. In this study, the crystallography of reverted austenite (γr) during the reversion phase transformation upon heating the ICCGHAZ of a high-strength pipeline steel was studied using Gleeble thermal simulation and electron backscatter diffraction (EBSD) technique. Two thermal cycles with peak temperatures of 1300oC and 760oC/800oC/840oC were conducted to simulate the phase transformation process in the ICCGHAZ. The samples were directly quenched to room temperature after been reheated to the second peak temperature, and the reversion behavior, distribution, and crystallography of γr were studied. The results showed that the volume fraction of γr formed at 760, 800, and 840oC was 4.1%, 8.9%, and 25.2%, respectively. γr preferred to nucleate along prior austenite grain boundaries (PAGB), and posterior the block boundaries within the prior austenite grains. γr preferred to grow to blocky type along the PAGB, and the acicular type γr between bainite laths was suppressed. The crystallographic study showed that the formation of γr at PAGB was not free nucleation. However, γr was formed based on the crystallographic orientation of PAGB alongside prior austenite grain complying with Kurdjuov-Sachs (K-S) relationship, while having non K-S relationship with the prior austenite grain on the other side. After nucleation at PAGB, and at a low second peak temperature (760oC), γr transformed to prior austenite grain with non K-S relationship, and the γr formed in blocky and necklace-type along the PAGB. With an increase in the second peak temperature (800-840oC), γr transformed to the prior austenite grains on both sides. The analysis showed that the reversion behavior and crystallography of γr during the second pass reheating have a big impact on the phase transformation upon cooling and the corresponding microstructure and mechanical properties.

Key wordshigh strength pipeline steel    intercritically reheated coarse-grained heat affected zone (ICCGHAZ)    reverted austenite    crystallography    reversion phase transformation
收稿日期: 2020-07-31     
ZTFLH:  TG407  
基金资助:国家自然科学基金项目(51801233)
作者简介: 李学达,男,1985年生,副教授,博士
图1  热循环曲线示意图
图2  X100管线钢热模拟CGHAZ组织的SEM像
图3  CGHAZ的EBSD表征图(a) band contrast map (b) all-Euler map (c, d) {100} pole figures and theoretical variants of γp1 (c) and γp2 (d)
图4  Q760、Q800和Q840试样经LePera试剂侵蚀后显微组织的OM像
图5  Q760、Q800和Q840试样的原位SEM像及其EBSD表征(a1-c1) SEM images (a2-c2) band contrast maps (a3-c3) all-Euler maps
图6  Q760试样γr与γp的晶体学取向关系标定(a) SEM map (b) band contrast map (c) all-Euler map (d-f) {100} pole figure orientation distributions and theoretical variants
图7  Q800试样γr与γp的晶体学取向关系标定(a) SEM map (b) band contrast map (c) all-Euler map (d-f) {100} pole figure orientation distributions and theoretical variants
图8  Q840试样γr与γp的晶体学取向关系标定(a) SEM map (b) band contrast map (c) all-Euler map (d-f) {100} pole figure orientation distributions and theoretical variants
1 Feng Y R, Ji L K, Li W W, et al. Progress and prospects of research and application of X80 pipeline steel and steel pipe in China [J]. Oil Gas Storage Transp., 2020, 39: 612
1 冯耀荣, 吉玲康, 李为卫等. 中国X80管线钢和钢管研发应用进展及展望 [J]. 油气储运, 2020, 39: 612
2 Xia D X, Wang X L, Li X C, et al. Properties and microstructure of third generation X90 pipeline steel [J]. Acta Metall. Sin., 2013, 49: 271
2 夏佃秀, 王学林, 李秀程等. X90级别第三代管线钢的力学性能与组织特征 [J]. 金属学报, 2013, 49: 271
3 Shang C J, Wang X M, Yang S W, et al. Microstructure refinement of high strength low carbon bainitic steel [J]. Acta Metall. Sin., 2003, 39: 1019
3 尚成嘉, 王学敏, 杨善武等. 高强度低碳贝氏体钢的工艺与组织细化 [J]. 金属学报, 2003, 39: 1019
4 Shang C J, Wang X X, Liu Q Y, et al. Weldability of higher niobium X80 pipeline steel [A]. Proceedings of International Seminar on Welding of High Strength Pipeline Steels [C]. Araxa, Brazil: TMS, 2011: 435
5 Chen Y Q, Du Z Y, Xu L H. Microstructure and mechanical properties of heat affected zone for X80 pipeline steel [J]. Trans. China Weld. Inst., 2010, 31(5): 101
5 陈延清, 杜则裕, 许良红. X80管线钢焊接热影响区组织和性能分析 [J]. 焊接学报, 2010, 31(5): 101
6 Li X D. Study on the weldability of the third generation pipeline steels [D]. Beijing: University of Science & Technology Beijing, 2015
6 李学达. 第三代管线钢的焊接性能研究 [D]. 北京: 北京科技大学, 2015
7 Miao C L, Shang C J, Wang X M, et al. Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content [J]. Acta Metall. Sin., 2010, 46: 541
7 缪成亮, 尚成嘉, 王学敏等. 高Nb X80管线钢焊接热影响区显微组织与韧性 [J]. 金属学报, 2010, 46: 541
8 Nie W J, Shang C J, You Y, et al. Microstructure and toughness of the simulated welding heat affected zone in X100 pipeline steel with high deformation resistance [J]. Acta Metall. Sin., 2012, 48: 797
8 聂文金, 尚成嘉, 由 洋等. 抗变形X100管线钢模拟焊接热影响区的组织与韧性研究 [J]. 金属学报, 2012, 48: 797
9 Matsuda F, Fukada Y, Okada H, et al. Review of mechanical and metallurgical investigations of martensite-austenite constituent in welded joints in Japan [J]. Weld. World, 1996, 37: 134
10 Shi Y W, Han Z X. Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel [J]. J. Mater. Process. Technol., 2008, 207: 30
11 Lan L Y, Qiu C L, Zhao D W, et al. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel [J]. Mater. Sci. Eng., 2011, A529: 192
12 Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence [J]. Metall. Mater. Trans., 1994, 25A: 563
13 Li X D, Shang C J, Han C C, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 1025
13 李学达, 尚成嘉, 韩昌柴等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响 [J]. 金属学报, 2016, 52: 1025
14 Li X D, Ma X P, Subramanian S V, et al. Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel [J]. Mater. Sci. Eng., 2014, A616: 141
15 You Y, Shang C J, Chen L, et al. Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone [J]. Mater. Des., 2013, 43: 485
16 Di X J, An X, Cheng F J, et al. Effect of martensite-austenite constituent on toughness of simulated inter-critically reheated coarse-grained heat-affected zone in X70 pipeline steel [J]. Sci. Technol. Weld. Join., 2016, 21: 366
17 Li X D, Fan Y R, Ma X P, et al. Influence of martensite-austenite constituents formed at different intercritical temperatures on toughness [J]. Mater. Des., 2015, 67: 457
18 Zhang X G, Miyamoto G, Toji Y, et al. Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy [J]. Acta Mater., 2018, 144: 601
19 Zhang X G, Miyamoto G, Kaneshita T, et al. Growth mode of austenite during reversion from martensite in Fe-2Mn-1.5Si-0.3C alloy: A transition in kinetics and morphology [J]. Acta Mater., 2018, 154: 1
20 Nakada N, Tsuchiyama T, Takaki S, et al. Temperature dependence of austenite nucleation behavior from lath martensite [J]. ISIJ Int., 2011, 51: 299
21 Nakada N, Tsuchiyama T, Takaki S, et al. Variant selection of reversed austenite in lath martensite [J]. ISIJ Int., 2007, 47: 1527
22 Xie Z J, Han G, Zhou W H, et al. A novel multi-step intercritical heat treatment induces multi-phase microstructure with ultra-low yield ratio and high ductility in advanced high-strength steel [J]. Scr. Mater., 2018, 155: 164
23 Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59: 4002
24 Xie Z J, Shang C J, Subramanian S V, et al. Atom probe tomography and numerical study of austenite stabilization in a low carbon low alloy steel processed by two-step intercritical heat treatment [J]. Scr. Mater., 2017, 137: 36
25 Fairchild D P, Macia M L, Bangaru N V, et al. Girth welding development for X120 linepipe [A]. Proceedings of the 13th International Offshore and Polar Engineering Conference [C]. Hawaii: ISOPE-2003, 2003: 26
26 Zhong Y, Xiao F R, Zhang J W, et al. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel [J]. Acta Mater., 2006, 54: 435
27 Guo Z, Lee C S, Morris Jr J W. On coherent transformations in steel [J]. Acta Mater., 2004, 52: 5511
28 Gourgues A F, Flower H M, Lindley T C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures [J]. Mater. Sci. Technol., 2000, 16: 26
29 Li X D, Ma X P, Subramanian S V, et al. EBSD characterization of secondary microcracks in the heat affected zone of a X100 pipeline steel weld joint [J]. Int. J. Fract., 2015, 193: 131
30 You Y, Wang X M, Shang C J. Influence of austenitizing temperature on the microstructure and impact toughness of a high strength low alloy HSLA100 steel [J]. Acta Metall. Sin., 2012, 48: 1290
30 由 洋, 王学敏, 尚成嘉. 奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响 [J]. 金属学报, 2012, 48: 1290
31 Zhang X G, Miyamoto G, Furuhara T. Effects of heating rate on microstructure of reverted austenite [J]. Iron Steel, 2019, 54(2): 83
31 张献光, 宫本吾郎, 古原忠. 加热速率对逆转变奥氏体微观组织的影响 [J]. 钢铁, 2019, 54(2): 83
32 Li X D, Shang C J, Ma X P, et al. Elemental distribution in the martensite-austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel [J]. Scr. Mater., 2017, 139: 67
[1] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[2] 徐文胜, 张文征. 先共析渗碳体上形核的珠光体晶体学研究[J]. 金属学报, 2019, 55(4): 496-510.
[3] 马秀良, 胡肖兵. 高温合金中硼化物精细结构的高空间分辨电子显微学研究[J]. 金属学报, 2018, 54(11): 1503-1524.
[4] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[5] 王猛, 刘振宇, 李成刚. 轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理[J]. 金属学报, 2017, 53(8): 947-956.
[6] 王莉,周忠娇,张少华,降向冬,楼琅洪,张健. 镍基单晶高温合金冷热循环过程中圆孔周围裂纹萌生与扩展行为[J]. 金属学报, 2015, 51(10): 1273-1278.
[7] 高古辉, 桂晓露, 安佰锋, 谭谆礼, 白秉哲, 翁宇庆. 终冷温度对Mn系超低碳HSLA钢组织及低温韧性的影响[J]. 金属学报, 2015, 51(1): 21-30.
[8] 赵天章, 宋鸿武, 张光亮, 程明, 张士宏. 拉拔过程中珠光体钢丝心部的织构演化规律及其对力学性能的影响*[J]. 金属学报, 2014, 50(6): 667-673.
[9] 韦昭召,马骁,张新平. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究[J]. 金属学报, 2013, 49(2): 187-198.
[10] 鲁法云,杨平,孟利,王会珍. Fe-22Mn TRIP/TWIP钢拉伸过程组织、性能及晶体学行为分析[J]. 金属学报, 2013, 49(1): 1-9.
[11] 由洋 王学敏 尚成嘉. 奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响[J]. 金属学报, 2012, 48(11): 1290-1298.
[12] 肖旋 许辉 秦学智 郭永安 郭建亭 周兰章. 3种铸造镍基高温合金热疲劳行为研究[J]. 金属学报, 2011, 47(9): 1129-1134.
[13] 顾新福 张文征. 马氏体相变晶体学的简易矢量分析方法[J]. 金属学报, 2011, 47(2): 241-245.
[14] 栾军华 刘国权 王浩 . 纯Fe试样中晶粒的三维可视化重建[J]. 金属学报, 2011, 47(1): 69-73.
[15] 石章智 张文征. 用相变晶体学指导Mg-Sn-Mn合金优化设计[J]. 金属学报, 2011, 47(1): 41-46.