Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 778-786    DOI: 10.11900/0412.1961.2015.00625
  论文 本期目录 | 过刊浏览 |
等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能*
崔君军1,陈礼清1(),李海智2,佟伟平2
1 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819。
2 东北大学材料电磁过程研究教育部重点实验室, 沈阳 110819。
TEMPERED MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTEMPERED LOW ALLOYED BAINITIC DUCTILE IRON
Junjun CUI1,Liqing CHEN1(),Haizhi LI2,Weiping TONG2
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China.
2 Key Laboratory for Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
引用本文:

崔君军,陈礼清,李海智,佟伟平. 等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能*[J]. 金属学报, 2016, 52(7): 778-786.
Junjun CUI, Liqing CHEN, Haizhi LI, Weiping TONG. TEMPERED MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTEMPERED LOW ALLOYED BAINITIC DUCTILE IRON[J]. Acta Metall Sin, 2016, 52(7): 778-786.

全文: PDF(1326 KB)   HTML
  
摘要: 

对3.55C-1.95Si-0.36Mn-3.58Ni-0.708Cu-0.92Mo-0.65Cr (质量分数, %)低合金贝氏体球墨铸铁实施等温淬火及不同温度的回火热处理工艺, 采用OM, EPMA, SEM, TEM以及XRD研究了回火温度对等温淬火低合金贝氏体球墨铸铁的组织演变过程的影响, 并对力学性能和耐磨性进行了测试与分析. 结果表明, 回火过程组织演变的物理机制包括孪晶马氏体及其位错亚结构的回复与再结晶软化、残余奥氏体分解、马氏体中过饱和碳的脱溶与相变以及共晶渗碳体的转变等过程. 随着回火温度的升高, 等温淬火低合金贝氏体球墨铸铁基体的显微硬度和宏观硬度及抗压强度逐渐降低. 在450 ℃回火后, 共晶渗碳体的显微硬度出现最低值, 其原因是, 在此温度下共晶渗碳体的亚片层有α相析出, 此时, 低合金贝氏体球墨铸铁的压缩率最高, 塑性提高; 在600 ℃回火时, 其力学性能明显恶化. 在干砂/橡胶轮磨损条件下, 450 ℃回火后的等温淬火低合金贝氏体球墨铸铁具有较好的耐磨性. 磨损形貌观察表明, 其磨损机制为塑性变形疲劳磨损和显微切削, 塑性变形疲劳机制对耐磨性的贡献大于切削破坏机制, 在450 ℃回火析出的弥散Mo2C对耐磨性也有一定贡献.

关键词 贝氏体球墨铸铁等温淬火回火处理组织演变力学性能磨损机制    
Abstract

Austempered bainitic ductile iron has been widely used in machinery components and parts due to its low fabrication cost, excellent mechanical properties, and abrasive wear resistance. In order to get a fine bainitic matrix, austempering process is usually adopted which consists of austenitizing temperature, austempering temperature and time. For quenched ductile cast iron, tempering plays an important role in subsequent heat treatment process. However, less attention has been paid on the microstructural evolution and mechanical properties of the austempered bainitic ductile iron after tempering treatment. Thus, in this work, 3.55C-1.95Si-0.36Mn-3.58Ni-0.708Cu-0.92Mo-0.65Cr (mass fraction, %) bainitic ductile iron was subjected to austempering and subsequent tempering treatment, and the effect of tempering on microstructures and properties has been investigated by using OM, EP MA, SEM, TEM and XRD. The microstructural evolution during tempering has been investigated, and mechanical properties and wear resistance have also been measured and analyzed. The results show that microstructural evolution of the bainitic ductile iron during tempering contains recovery and recrystallization softening processes of twin martensite and dislocation substructure, decomposition of retained austenite, dissolution of supersaturated carbon and phase transformation in martensite and transformation in eutectic cementite. With increasing tempering temperature, there is a gradual decrease in micro- and macro-hardness of substrate microstructure and compressive strength of austempered low alloyed bainitic ductile iron. When the bainitic ductile iron was tempered at 450 ℃, the eutectic cementite has the lowest micro-hardness value due to the precipitation of α phase in its slice layer and the compressive ratio is thus higher. The mechanical properties of the austempered low alloyed bainitic ductile iron was even worse when tempered at 600 ℃. Under the wear condition of dry sand/rubber wheel, the austempered low alloyed bainitic ductile iron possesses the best wear resistance when tempered at 450 ℃. The worn morphology observation by SEM indicates that the worn surfaces were caused by plastic deformation and micro-cutting. The plastic deformation plays an important role in wear process, while the precipitated and finely distributed Mo2C contributes a lot to the improvement of wear resistance when tempered at 450 ℃.

Key wordsbainitic ductile iron    austempering    tempering treatment    microstructural evolution    mechanical property    wear mechanism
收稿日期: 2015-12-03     
基金资助:*国家高技术研究发展计划资助项目2012AA03A508
图 1  低合金贝氏体球墨铸铁等温淬火(IQ)及后续回火(T)热处理工艺示意图
图2  等温淬火低合金贝氏体球墨铸铁显微组织的OM像
图3  等温淬火低合金贝氏体球墨铸铁中马氏体的TEM像和选区电子衍射花样及标定
图4  经不同温度回火的等温淬火态低合金贝氏体球墨铸铁的OM像
图 5  低合金贝氏体球墨铸铁经IQ和IQ-T处理后的XRD谱
图6  不同回火温度下等温淬火贝氏体球墨铸铁的析出相的TEM像及碳化物衍射斑点分析
Process Macro-hardness of substrate / HV Macro-hardness of cementite / HV Hardness
HRC
Compressive strength / MPa Compressive ratio / %
IQ 571.3 1045.5 56.8 2320 18.0
IQ-T-300 619.6 906.5 54.9 2390 21.1
IQ-T-450 540.0 746.9 51.3 2300 26.7
IQ-T-600 452.4 954.7 47.4 1890 18.5
表1  不同热处理工艺的低合金贝氏体球墨铸铁的力学性能
Process Weight loss / g Wear resistance / g-1
IQ 0.8212 1.2200
IQ-T-300 1.0944 0.9137
IQ-T-450 0.5408 1.8500
IQ-T-600 1.2406 0.8060
表2  不同热处理工艺的低合金贝氏体球墨铸铁的耐磨性能
图7  等温淬火态低合金贝氏体球墨铸铁经450 ℃回火后的TEM像
图 8  经过450 ℃回火处理的低合金贝氏体球墨铸铁组织中渗碳体形貌的SEM像
图 9  经过IQ和IQ-T热处理后低合金贝氏体球墨铸铁的磨损表面形貌的SEM像
[1] Murcia S C, Paniagua M A, Ossa E A.Mater Sci Eng, 2013; A566: 8
[2] Pal S, Daniel T, Farjoo M.Int J Fatigue, 2013; 52: 144
[3] Laino S, Sikora J A, Dommarco R C.Wear, 2008; 265: 1
[4] Sun T, Song R B, Yang F Q, Li Y P, Wu C J.Acta Metall Sin, 2014; 50: 1327
[4] (孙挺, 宋仁伯, 杨富强, 李亚萍, 吴春京. 金属学报, 2014; 50: 1327)
[5] Zhang J W, Zhang N, Zhang M T, Lu L T, Zeng D F, Song Q P.Mater Lett, 2014; 119: 47
[6] Sohi M H, Ahmadabadi M N, Vahdat A B.J Mater Process Technol, 2004; 153: 203
[7] Zhou R, Jiang Y H, Lu D H, Zhou R F, Li Z H.Wear, 2001; 250: 529
[8] Kim Y J, Shin Y, Park H, Lim J D.Mater Lett, 2008; 62: 357
[9] Basso A, Martínez R, Sikora J.Mater Sci Technol, 2007; 23: 1321
[10] Erdogan M, Cerah M, Kocatepe K.Int J Cast Met Res, 2006; 19: 248
[11] Panda R K, Dhal J P, Mishra S C, Sen S.Int J Curr Res Rev, 2012; 4: 16
[12] Janowak J F, Norton P A.Am Foundry Soc, 1985; 88: 123
[13] Bakhtiari R, Ekrami A.Mater Sci Eng, 2009; A525: 159
[14] Zhao Z K, Sun Q Z, Zhu J X.Heat Treat Met, 2002; 27(4): 29
[14] (赵中魁, 孙清洲, 朱君贤. 金属热处理, 2002; 27(4): 29)
[15] Rashidi A M, Moshrefi-Torbati M.Mater Lett, 2000; 45: 203
[16] Cui J J, Zhang H Y, Chen L Q, Li H Z, Tong W P.Acta Metall Sin (Engl Lett), 2014; 27: 476
[17] Chi H X, Ma D S, Wang C, Chen Z Z, Yong Q L.Acta Metall Sin, 2010; 46: 1181
[17] (迟宏宵, 马党参, 王昌, 陈再枝, 雍岐龙. 金属学报, 2010; 46: 1181)
[18] Zhang K, Yong Q L, Sun X J, Li Z D, Zhao P L, Chen S D.Acta Metall Sin, 2014; 50: 913
[18] (张可, 雍岐龙, 孙新军, 李昭东, 赵培林, 陈守东. 金属学报, 2014; 50: 913)
[19] Wang L J, Cai Q W, Wu H B, Yu W.J Univ Sci Technol Beijing, 2010; 32: 1150
[19] (王立军, 蔡庆伍, 武会宾, 余伟. 北京科技大学学报, 2010; 32: 1150)
[20] Chen W, Li L, Fei Y, Wang P, Sun Z Q.Acta Metall Sin, 2009; 45: 256
[20] (陈伟, 李龙, 飞杨, 王朋, 孙祖庆. 金属学报, 2009; 45: 256)
[21] Yang F B, Bai B Z, Liu D Y, Chang K D, Wei D Y, Fang H S.Acta Metall Sin, 2004; 40: 296
[21] (杨福宝, 白秉哲, 刘东雨, 常开地, 韦东远, 方鸿生. 金属学报, 2004; 40: 296)
[22] Liu Q D, Liu W Q, Wang Z M, Zhou B X.Acta Metall Sin, 2009; 45: 1281
[22] (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[23] Zhu X D, Li C J, Zhang S H, Zou M, Su S H.Acta Metall Sin, 1998; 34: 31
[23] (朱晓东, 李承基, 章守华, 邹明, 苏世怀. 金属学报, 1998; 34: 31)
[24] Fridberg J, Hillert M.Acta Metall, 1970; 18: 1253
[25] Abedi H R, Fareghi A, Saghafian H, Kheirandish S H.Wear, 2010; 268: 622
[26] Slatter T, Lewis R, Jones A H.Wear, 2011; 271: 1481
[27] Efremenko V G, Shimizu K, Noguchi T, Efremenko A V, Chabak Y G.Wear, 2013; 305: 155
[28] Cardoso P H S, Israel C L, Strohaecker T R.Wear, 2014; 313: 29
[29] Zhang J W, Zhang N, Zhang M T, Zeng D F, Song Q P, Lu L T.Wear, 2014; 318: 62
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.