Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 445-454    DOI: 10.11900/0412.1961.2015.00389
  论文 本期目录 | 过刊浏览 |
拓扑密堆μ相对含Hf的镍基粉末高温合金组织和性能的影响*
张义文1,2(),胡本芙3
1 钢铁研究总院高温材料研究所, 北京 100081
2 钢铁研究总院高温合金新材料北京市重点实验室, 北京 100081
3 北京科技大学材料科学与工程学院, 北京 100083
EFFECTS OF TOPOLOGICALLY CLOSE PACKED μ PHASE ON MICROSTRUCTURE AND PROPERTIES IN POWDER METALLURGY Ni-BASED SUPERALLOY WITH Hf
Yiwen ZHANG1,2(),Benfu HU3
1 High Temperature Material Institute, Central Iron and Steel Research Institute, Beijing 100081, China
2 Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张义文,胡本芙. 拓扑密堆μ相对含Hf的镍基粉末高温合金组织和性能的影响*[J]. 金属学报, 2016, 52(4): 445-454.
Yiwen ZHANG, Benfu HU. EFFECTS OF TOPOLOGICALLY CLOSE PACKED μ PHASE ON MICROSTRUCTURE AND PROPERTIES IN POWDER METALLURGY Ni-BASED SUPERALLOY WITH Hf[J]. Acta Metall Sin, 2016, 52(4): 445-454.

全文: PDF(1349 KB)   HTML
摘要: 

研究了含Hf (0~0.89%)的FGH4097粉末高温合金中拓扑密堆μ相的析出动力学、组织形态以及μ相对Hf含量为0.30%的合金盘坯力学性能的影响. 结果表明, Hf含量为0.30%和0.89%的合金, 经750~900 ℃长期时效后μ相已明显析出. 随着时效温度的升高、时效时间的延长以及Hf添加量的增加, μ相析出量增加且尺寸长大. μ相主要在晶内以长条片状形态析出. Hf含量为0.30%的FGH4097合金盘坯在550~650 ℃长期时效后未出现μ相, 高温拉伸性能和高温持久性能没有降低, 组织稳定性良好. 750 ℃长期时效后, 盘坯中析出了μ相, 析出的μ相对高温拉伸强度无明显影响, 有助于提高高温拉伸塑性, 降低了高温持久寿命, 高温持久塑性提高约30%. 详细讨论了μ相的析出行为、γ固溶体中合金元素的再分配以及合金断口特征. 解释了μ相对力学性能影响的脆-韧双重作用机理, 并提出控制和避免μ相大量析出造成性能劣化的措施和方法.

关键词 粉末高温合金FGH4097Hfμ力学性能    
Abstract

It is widely acknowledged that topologically close packed (TCP) phases are detrimental to comprehensive properties of superalloys, as TCP phases deplete strengthening elements from matrix and easily become crack initiations. In this work, the precipitation kinetics and morphology of topologically close packed μ phase in FGH4097 powder metallurgy (PM) superalloy with (0~0.89%)Hf and the effect of μ phase on the mechanical properties of FGH4097 PM superalloy billet with 0.30%Hf has been investigated. The results showed that μ phase precipitated obviously in the alloys with 0.30%Hf and 0.89%Hf after long-term ageing at 750~900 ℃, the amount and size of μ phase increased as the ageing temperature, ageing time and Hf content increasing. μ phase mainly precipitated in grains with strip and flake shapes. After long-term ageing at 550~650 ℃, no μ phase precipitated in FGH4097 PM superalloy billet with 0.30%Hf and the tensile properties and stress-rupture properties at high temperature were not decreased, which showed excellent microstructure stability. After long term ageing at 750 ℃, precipitated μ phase had little effect on tensile strength at high temperature, however, the tensile ductility increased and high temperature stress rupture life reduced, and the stress rupture ductility increased by about 20%. In this work, the precipitation behavior of μ phase, the redistribution of elements in γ solid solution and the FGH4097 PM superalloy fracture morphology characteristics have been discussed in detail. The mechanism of the brittle and ductile dual effect of μ phase on the mechanical properties has been explained. The methods of controlling and avoiding excessive μ phase precipitation which leaded to performance deterioration have been proposed.

Key wordspowder metallurgy superalloy    FGH4097    Hf    μ    phase    mechanical property
收稿日期: 2015-07-16     
基金资助:*国家国际科技合作专项资助项目2014DFR50330
图1  不同Hf含量的FGH4097合金标准热处理态显微组织
图2  Hf含量为0.89%的FGH4097合金在不同温度下时效1000 h后的SEM像
图3  Hf含量为0.89%的FGH4097合金在900 ℃时效1000 h后μ相的TEM像和[011?0]晶带轴的SAED谱以及 EDS分析结果
Element Mass fraction / % Atomic fraction / %
Al 0.26 0.78
Ti 0.33 0.56
Cr 10.65 16.55
Co 16.88 23.13
Ni 20.57 28.30
Nb 1.55 1.35
Mo 18.58 15.64
W 31.18 13.70
表1  μ相化学成分的EDS分析结果
图4  Hf含量为0.89%的FGH4097合金在850 ℃时效1000 h后M6C相的TEM像和[2?33]晶带轴的SAED谱以及EDS分析结果
Element Mass fraction / % Atomic fraction / %
C 26.13 71.51
Cr 17.11 10.81
Co 1.67 0.93
Ni 2.96 1.65
Nb 1.99 0.70
Mo 33.14 11.35
W 17.00 3.04
表2  M6C相化学成分的EDS分析结果
图5  Hf含量为0.89%的FGH4097合金在850 ℃时效1000 h析出的M23C6型碳化物的TEM像和[011]晶带轴的SAED谱以及EDS分析结果
Element Mass fraction / % Atomic fraction / %
C 1.82 8.21
Cr 73.99 76.93
Co 3.20 2.93
Ni 5.19 4.77
Mo 9.33 5.26
W 6.47 1.90
表3  M23C6相化学成分的EDS分析结果
图6  900 ℃时效不同时间前后不同Hf含量的FGH4097合金的SEM像
Status γ′ MC M3B2+M6C+μ M23C6
Heat treated 62.78 0.296 0.133 (no μ phase) -
Aged at 650 ℃ for 5000 h 64.04 0.281 0.186 -
Aged at 700 ℃ for 5000 h 64.12 0.254 0.206 0.045
Aged at 750 ℃ for 5000 h 64.21 0.214 1.234 0.158
表4  长期时效前后FGH4097合金盘坯的相组成
图7  750 ℃时效不同时间后FGH4097合金盘坯的SEM像
图8  FGH4097合金盘坯650 ℃时效5000 h后650 ℃持久试样断口全貌及源区形貌
Ageing temperature / ℃ Ageing time / h σb / MPa σ0.2 / MPa δ / % Ψ / % τ / h
550 2000 1190 975 17.5 19.5 264
5000 1190 980 22.0 21.0 281
650 2000 1190 980 23.0 24.0 285
5000 1240 1040 15.0 14.5 260
700 2000 1150 930 31.5 31.5 245
5000 1180 960 22.5 23.5 269
750 2000 1140 975 23.0 24.5 248
5000 1160 985 11.0 15.0 253
Heat treated - 1220 1020 12.5 15.5 243
表5  FGH4097合金盘坯长期时效前后750 ℃的拉伸性能和650 ℃的持久寿命
图9  FGH4097合金盘坯750 ℃时效5000 h后在750 ℃和637 MPa条件下持久试样断口全貌及源区形貌
Ageing temperature / ℃ τ / h δ / %
550 757 9.0
650 962 8.0
700 263 12.0
750 430 12.0
Heat treated 754 9.0
表6  FGH4097合金盘坯长期时效前后750 ℃的持久性能(光滑试样)
[1] Kotval P S, Venables J D, Calder R W.Metall Trans, 1972; 3: 457
[2] Radavich J, Furrer D, Carneiro T, Lemsky J.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale, PA: TMS, 2008: 63
[3] Amouyal Y, Seidman D N.Acta Mater, 2011; 59: 3321
[4] Zhao S Q, Dong J X, Xie X S, Smith G D, Patel S J.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: TMS, 2004: 63
[5] Warren R, Ingesten N G, Winberg L, R?nnhult T.Powder Metall, 1984; 27(3): 141
[6] Williams J C, Starke E A.Acta Mater, 2003; 51: 5773
[7] Ezaki H, Morinaga M, Yukawa N.Philos Mag, 1986; 53A: 709
[8] Yukawa N, Morinaga M, Ezaki H, Murata Y.In: Betz W, Brunetaud R, Coutsouradis D, Fischmeister H, Gibbons T B, Kvernes I, Lindblom Y, Marriott J B, Meadowcroft D B eds., High Temperature Alloys for Gas Turbines and Other Applications 1986, Dordrecht: D. Riedel Publishing Company, 1986: 935
[9] Morinaga M, Yukawa N, Adachi H, Ezaki H.In: Gell M, Kortovic C S, Bricknell R H, Kent W B, Radavich J F eds., Superalloys 1984, Warrendale, PA: TMS, 1984: 523
[10] Guo J T, Hou J H, Zhou L H.Metall Trans, 2006; 47: 198
[11] Qiu Y M, Zhu Y X.Acta Metall Sin, 1989; 25: 78
[11] (邱一鸣, 朱耀霄. 金属学报, 1989; 25: 78)
[12] Zhang Y W, Wang F M, Hu B F.Acta Metall Sin, 2012; 48: 187
[12] (张义文, 王福明, 胡本芙. 金属学报, 2012; 48: 187)
[13] Zhang Y W, Wang F M, Hu B F.Acta Metall Sin, 2012; 48: 1011
[13] (张义文, 王福明, 胡本芙. 金属学报, 2012; 48: 1011)
[14] Simas C T, Stoloff N S, Hagel W C. Superalloy II. New York: Joha Wiley & Sons, 1987: 143
[15] Beattie H J, Hagel W C.Trans Metall Soc AIME, 1961; 221(1): 28
[16] Miner R V.Metall Trans, 1977; 8A: 259
[17] Chen G L.Superalloy. Beijing: Metallurgical Industry Press, 1988: 70
[17] (陈国良. 高温合金. 北京:冶金工业出版社, 1988: 70)
[18] Stroh A N.Proc Royal Soc, 1954; 223A: 404
[19] Stroh A N.Proc Royal Soc London, 1955; 232A: 548
[20] Yoshinori M, Kiyoshi S, Natsuo Y.J Mater Sci, 1986; 21: 3653
[21] Boesch W J, Canada H B.J Met, 1968; 20: 46
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[7] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] 卢毓华, 王海舟, 李冬玲, 付锐, 李福林, 石慧. 基于高通量场发射扫描电镜建立的高温合金 γ' 相定量统计表征方法[J]. 金属学报, 2023, 59(7): 841-854.
[12] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[13] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[14] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[15] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.