Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 161-167    DOI: 1011900/0412.1961.2015.00245
  论文 本期目录 | 过刊浏览 |
固溶处理对热压CoCrW合金组织及力学性能的影响*
游晓红1,王刚刚1,王军2,许涛2,张洪宇3,韦华3()
1 太原科技大学材料科学与工程学院, 太原 0300002
2 驻某厂军代表室, 西安 7100773
3 中国科学院金属研究所, 沈阳 110016
EFFECT OF SOLID SOLUTION TREATMENT ONMICROSTRUCTURE AND MECHANICALPROPERTIES OF HOT-PRESS CoCrW ALLOYS
Xiaohong YOU1,Ganggang WANG1,Jun WANG2,Tao XU2,Hongyu ZHANG3,Hua WEI3()
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030000, China
2 Military Representative Office in Factory, Xi'an 710077, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

游晓红,王刚刚,王军,许涛,张洪宇,韦华. 固溶处理对热压CoCrW合金组织及力学性能的影响*[J]. 金属学报, 2016, 52(2): 161-167.
Xiaohong YOU, Ganggang WANG, Jun WANG, Tao XU, Hongyu ZHANG, Hua WEI. EFFECT OF SOLID SOLUTION TREATMENT ONMICROSTRUCTURE AND MECHANICALPROPERTIES OF HOT-PRESS CoCrW ALLOYS[J]. Acta Metall Sin, 2016, 52(2): 161-167.

全文: PDF(7394 KB)   HTML
摘要: 

利用SEM, XRD和TEM等分析手段研究了固溶处理对热压烧结CoCrW合金相组成的影响, 通过硬度测试、室温拉伸和摩擦磨损实验, 研究了固溶处理对热压烧结CoCrW合金力学性能的影响. 结果表明, 热压态与固溶态CoCrW合金的组成相均为M23C6, M6C, CrCo金属间化合物和γ-Co基体; 固溶处理降低了合金中的M23C6含量和原始颗粒边界数量, 同时改善了合金塑性和耐磨性能. 合金室温硬度和抗拉强度均随固溶温度升高、固溶时间延长而先增高后降低.

关键词 CoCrW合金热压烧结显微组织固溶处理力学性能    
Abstract

Co-based alloy has high strength, good corrosion and wear resistance, and is widely used in aviation industry, nuclear industry. The cast Co-based alloys has high hardness brittleness, but the toughness is low, which limits its wide use. The CoCrW alloy prepared by powder metallurgy process has high toughness, at the same time, the mechanical properties of the CoCrW alloy can be changed by heat treatment. In this work, the effect of solid solution treatment on the microstructure and mechanical properties of the hot pressed alloy was studied by SEM, XRD and TEM, hardness test, room-temperature tensile and wear experiment. The results show that the microstructure of the as-hot pressed and solid solution state CoCrW alloy are both composed of M23C6, M6C, CrCo intermetallic compounds and γ-Co matrix, the contents of M23C6 and prior particle boundaries decrease remarkably after solution treatment, meanwhile, the toughness and wear resistance of the alloy are improved. With the increase of solid solution temperature and time, the hardness and tensile strength at room temperature of CoCrW alloys in crease first and then decrease.

Key wordsCoCrW alloy    hot pressing    microstructure    solid solution treatment    mechanical property
收稿日期: 2015-05-03     
基金资助:* 国家自然科学基金资助项目51201161
图1  热压用CoCrW合金粉末的SEM像
图2  热压态及固溶态CoCrW合金微观组织的BSE像
图3  热压态和热处理态CoCrW合金的XRD谱
图4  热压态CoCrW合金的TEM明场像及SAED谱
Area V Cr Fe Co Ni W
Dark phase 25.82 40.61 1.75 16.27 1.19 14.36
Dark grey phase 3.59 26.27 5.34 48.56 4.92 11.32
light grey phase 3.84 30.80 3.97 36.48 2.60 22.32
Bright phase 6.60 21.81 2.11 24.11 1.61 43.76
表1  热压态CoCrW合金的EDS分析结果
Heat treatment condition M6C M23C6 CrCo γ-Co
As-hot pressed 11.10 2.36 36.54 50.00
1000 ℃, 4 h 10.82 2.15 39.75 47.28
1150 ℃, 4 h 9.90 2.05 36.15 51.90
1150 ℃, 12 h 11.14 0.74 35.92 52.19
表2  热压态和固溶态CoCrW合金中各相的面积分数
Heat treatment condition Macro-hardness / HRC Micro-hardness / HV
As-hot pressed 58.67 698.09
1000 ℃, 4 h 59.50 708.68
1150 ℃, 4 h 58.33 699.48
1150 ℃, 12 h 57.50 654.02
表3  热压态和固溶态CoCrW合金的硬度
图5  热压态和固溶态CoCrW合金的拉伸性能
图6  热压态及固溶态CoCrW合金拉伸断口的SEM像
图7  热压态及固溶态CoCrW合金磨痕的SEM像
Heat treatment condition Average volume loss / 10-2 mm3 Wear rate / (10-5 mm3mN-1)
As-hot pressed 4.92 1.37
1000 ℃, 4 h 4.59 1.27
1150 ℃, 4 h 4.49 1.25
1150 ℃, 12 h 4.23 1.17
表4  CoCrW合金摩擦磨损实验结果
[1] Kuzucu V, Ceylan M, Celik H, Aksoy I.J Mater Process Technol, 1997; 69: 257
[2] Lemarie E, Calvar M L.Wear, 2001; 249: 338
[3] Otterloo J D, Hosson J D.Acta Mater, 1997; 45: 1225
[4] Ashworth M A, Bryar J C, Jacobs M H, Davies S.Powder Metall, 1999; 42: 243
[5] Ahmed R, Ashraf A, Elameen M, Faisal N F, El-Sherik A M, Elakwah Y O, Goosen M F A.Wear, 2014; 312: 70
[6] Northwood D O.Mater Des, 1985; 6: 58
[7] Frenk A, Kurz W.Wear, 1994; 174: 81
[8] Crook P.Adv Mater Process, 1994; 145: 27
[9] Sims C T, Stoloff N S, Hagel W C. Superalloys II. New York: Wiley, 1987: 140
[10] Fu Z M, Song K J.Chinese Sci Bull, 1987; 5: 390
[10] (傅祖明, 宋科匠. 科学通报, 1987; 5: 390)
[11] Yu H, Ahmed R, Lovelock H D.In: Davies S ed., Proc World Congress Eng 2007, Vol II, London: Newswood Limited, 2007: 435
[12] Malayoglu U, Neville A.Wear, 2003; 255: 181
[13] Malayoglu U, Neville A.Wear, 2005; 259: 219
[14] Huang P Y. Powder Metallurgy Principle.2nd Ed., Beijing: Metallurgical Industry Press, 2006: 331
[14] (黄培云. 粉末冶金原理. 第2版, 北京: 冶金工业出版社, 2006: 331)
[15] Ahmed R, Lovelock H D, Davies S, Faisal N H.Tribol Int, 2013; 57: 8
[16] Jiang W H, Guan H R, Hu Z Q.Mater Sci Eng, 1999; A271: 101
[17] Larson J M.In: Hausner H H, Smith W E eds., Proc 1973 Int Pow der Metall Conf, Berlin: Springer, 1974: 537
[18] Wallace W, Dunthorne H B, Sprague R A.Can Metall Quart, 1974; 13: 517
[19] Kear K H.In: Hausner H H ed., Proc 1970 Int Powder Metally Conf, Berlin: Springer, 1971: 85
[20] Guo W M, Wu J T, Zhang F G, Zhao M H.J Iron Steel Res Int, 2006; 13(5): 65
[21] Rao G A, Kumar M, Srinivas M, Sarma D S.Mater Sci Eng, 2003; A355: 114
[22] Mao J, Yang W H, Wang W X, Zou J W, Zhou R F.Acta Metall Sin, 1993; 29: 187
[22] (毛健, 杨万宏, 汪武祥, 邹金文, 周瑞发. 金属学报, 1993; 29: 187)
[23] Prakash T L, Tewari S N.In: Ramakrishnan P ed., Powder Metall Related High Temperature Materials. Zurich: Trans Tech Publications, 1985: 402
[24] Wu C F, Ma M X, Liu W J, Zhong M L, Zhang W M, Zhang H J.Acta Metall Sin, 2009; 45: 1013
[24] (吴朝锋, 马明星, 刘文今, 钟敏霖, 张伟明, 张红军. 金属学报, 2009; 45: 1013)
[25] John R, David F.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Champion: TMS, 2004: 381
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.