Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 626-632    DOI: 10.3724/SP.J.1037.2013.00565
  本期目录 | 过刊浏览 |
退火温度对SUS304不锈钢焊接残余应力计算精度的影响*
邓德安1,2(), KIYOSHIMA Shoichi3
1 重庆大学材料科学与工程学院, 重庆400045
2 哈尔滨工业大学先进焊接与连接国家重点实验室, 哈尔滨100051
3 Computational Mechanics Research Center Inc., Tokyo, 142-0041, Japan
INFLUENCE OF ANNEALING TEMPERATURE ON CALCULATION ACCURACY OF WELDING RESIDUAL STRESS IN A SUS304 STAINLESS STEEL JOINT
DENG Dean1,2(), KIYOSHIMA Shoichi3
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045
2 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001
3 Computational Mechanics Research Center Inc., Tokyo, 142-0041, Japan
引用本文:

邓德安, KIYOSHIMA Shoichi. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响*[J]. 金属学报, 2014, 50(5): 626-632.
Dean DENG, Shoichi KIYOSHIMA. INFLUENCE OF ANNEALING TEMPERATURE ON CALCULATION ACCURACY OF WELDING RESIDUAL STRESS IN A SUS304 STAINLESS STEEL JOINT[J]. Acta Metall Sin, 2014, 50(5): 626-632.

全文: PDF(7033 KB)   HTML
摘要: 

采用热-弹-塑性有限元计算方法模拟了奥氏体不锈钢SUS304在单道堆焊时的温度场和应力场, 探讨了加工硬化和退火软化对焊接残余应力计算结果的影响, 重点考察了数值模型中的退火温度设定值对焊接残余应力计算精度的影响. 数值模拟结果表明: 退火软化效应对纵向残余应力的计算结果有明显影响, 随着退火温度设定值的升高, 纵向残余应力的峰值增大, 而且焊缝及其附近的纵向应力有整体升高的趋势.退火温度对横向残余应力的影响较小.比较计算结果与实验结果可知, SUS304钢的退火温度设定为1000 ℃时, 数值模拟结果与实测结果比较吻合.

关键词 退火效应加工硬化残余应力数值模拟    
Abstract

Austenite stainless steels such as SUS304, owing to their good combination of mechanical properties, corrosion resistance and weldability, are widely used in a variety of industries. In the simulation of welding residual stress of an austenite stainless steel joint, because of the high strain hardening rate and the heating-cooling thermal cycles, both the work hardening phenomenon and the annealing effect have to be taken into account in the material constitutive relations. Though a number of numerical models have included the work hardening by using isotropic rule, kinematic rule or mixed rule, limited models have dealt with the annealing effect. For the steels or alloys with high strain hardening coefficient, neglecting the annealing effect will overestimate the welding residual stresses to a large extent. In this study, the thermal elastic plastic finite element method (T-E-P FEM) was used to simulate welding temperature and residual stresses in a SUS304 steel bead-on joint. In the computational approach based on the T-E-P FEM, a moving heat source with uniform density distribution was used to model the heat input, and a simple model was proposed to consider the annealing effect. Using the developed computational approach, the influences of work hardening and annealing effect on the welding residual stress were clarified. In addition, the effect of annealing temperature on the distribution and magnitude of welding residual stress in the weld zone and its vicinity was examined. The simulated results show that annealing effect has a significant influence on the longitudinal residual stress, and the peak value of longitudinal tensile stress increases with annealing temperature. The longitudinal tensile stresses in the fusion zone and its vicinity also increase with annealing temperature. It seems that the annealing temperature has insignificant influence on the transverse residual stresses. Comparing the simulated results and the measured data, it was found that when the annealing temperature was assumed to be 1000 ℃ for SUS304 steel, the longitudinal residual stresses predicted by the T-E-P FEM generally match the measurements. The present work is helpful for developing more advanced materials model to calculate welding residual stress with high accuracy.

Key wordsannealing effect    work hardening    residual stress    numerical simulation
收稿日期: 2013-09-09     
ZTFLH:  TG441  
基金资助:*国家自然科学基金项目51275544和先进焊接与连接国家重点实验室开放课题基金资助
作者简介: null

邓德安, 男, 1968年生, 教授

图1  
图 2  
图3  
Case Work hardening Annealing temperature / ℃
A Yes 600
B Yes 800
C Yes 1000
D Yes 1200
E Yes -
F No -
  
图4  
图5  
图6  
图7  
图8  
图9  
[1] Ueda Y, Murakawa H, Ma N. Welding Deformation and Residual Stress Prevention. Amsterdam: Elsevier, 2012: 1
[2] Lindgren L E. Computational Welding Mechanics. London: Woodhead Publishing, 2007: 1
[3] Deng D, Murakawa H. Comp Mater Sci, 2013; 78: 55
[4] Deng D, Tong Y, Ma N, Murakawa H. Acta Metall Sin (Engl Lett), 2013; 26: 333
[5] Deng D, Murakawa H. Comp Mater Sci, 2008; 43: 681
[6] Deng D, Murakawa H. Comp Mater Sci, 2006; 37: 209
[7] Keavey M,Mark A,Dai H,Withers P J. Proc ASME 2010 Pressure Vessels & Piping Division/K-PVP Conference, Washington, USA: ASME, 2010 (CD-ROM)
[8] Qiao D, Zhang W, Pan T Y, Crooker P, David S, Feng Z. Sci Technol Weld Joining, 2013; 18: 624
[9] Francis J A, Bhadeshia H K D H, Withers P J. Mater Sci Technol, 2007; 23: 1009
[10] Dong P. Sci Technol Weld Joining, 2005; 10: 389
[11] Totten G, Howes M, Inoue T. Handbook of Residual Stress and Deformation of Steel. Materials Park, Ohio: ASM International, 2002: 1
[12] Ma N, Ueda Y. Trans JWRI, 1994; 23: 239
[13] Ueda Y, Murakawa H, Ma N. Trans AMSE, 1996; 118: 576
[14] Deng D, Kiyoshima S. Comp Mater Sci, 2010; 50: 612
[15] Deng D, Kiyoshima S. Acta Metall Sin, 2010; 46: 195
[15] (邓德安, 青岛祥一. 金属学报, 2010; 46: 195)
[16] Deng D. Mater Des, 2013; 49: 1022
[17] Deng D, Kiyoshima S. Comp Mater Sci, 2012; 62: 23
[18] Okagaito T, Ohji T, Miyasaka F. Q J Jpn Weld Soc, 2004; 22: 21
[19] Okagaito T, Ohji T, Miyasaka F. Q J Jpn Weld Soc, 2005; 23: 536
[20] Dupont J N, Marder A R. Weld J, 1995; 74: 406s
[21] Chaboche J L. Int J Plasticity, 2008; 24: 1642
[22] Deng D, Kiyoshima S. Nucl Eng Des, 2010; 240: 688
[23] Leggatt H. Int J Pres Ves Pip, 2008; 85: 144
[1] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[5] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[8] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[9] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[10] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[11] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[12] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[13] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[14] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[15] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.