Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 313-322    DOI: 10.3724/SP.J.1037.2013.00355
  本期目录 | 过刊浏览 |
焊接热循环及时效处理对一种Ni-Fe基高温合金的组织和力学性能的影响*
吴栋1, 王鑫1,2, 董文超1, 陆善平1()
1 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳110016
2 中国工程物理研究院, 绵阳621900
EFFECTS OF WELDING THERMAL CYCLE AND AGING TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTY OF A Ni-Fe BASE SUPERALLOY
WU Dong1, WANG Xin1,2, DONG Wenchao1, LU Shanping1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 China Academy of Engineering Physics, Mianyang 621900
引用本文:

吴栋, 王鑫, 董文超, 陆善平. 焊接热循环及时效处理对一种Ni-Fe基高温合金的组织和力学性能的影响*[J]. 金属学报, 2014, 50(3): 313-322.
Dong WU, Xin WANG, Wenchao DONG, Shanping LU. EFFECTS OF WELDING THERMAL CYCLE AND AGING TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTY OF A Ni-Fe BASE SUPERALLOY[J]. Acta Metall Sin, 2014, 50(3): 313-322.

全文: PDF(16002 KB)   HTML
摘要: 

采用焊接热模拟实验, 研究了焊接热循环对一种700 ℃超超临界火电机组高温部件候选材料—Ni-Fe基高温合金组织和力学性能的影响. 结果表明, 固溶态Ni-Fe基高温合金在经过峰值温度为1249 ℃的焊接热循环后, 25和700 ℃屈服强度和抗拉强度都降低, 延伸率升高. 对经过焊接热循环后的合金再进行时效处理发现, 在25 ℃时, 焊接热循环后再时效样品的屈服强度和抗拉强度与母材时效态相当; 在700 ℃时, 焊接热循环后再时效样品的强度高于母材时效态的强度. Ni-Fe基高温合金在高温焊接热循环过程中, 强化相γ'以及难溶相MC发生溶解, 导致强度下降. 经过时效处理后, 强化相γ'再次大量析出, 同时晶界析出了M23C6. M23C6存在于晶界, 并没有造成拉伸性能的弱化. 高温焊接热循环使MC发生部分溶解, 为M23C6的时效析出提供了C元素.

关键词 Ni-Fe基高温合金焊接热循环时效γ'碳化物力学性能    
Abstract

Increasing the steam temperature and pressure of boilers in super-ultracritical power plant is an important approach to increase the plant efficiency. The steam temperature of the most efficient coal power plant is now around 620 ℃, representing an increase of about 80 ℃ in the past 40 years, which owes to the high temperature properties improvement of boiler components, such as the superheater and the reheater. Nickel base superalloy, for example Inconel 740 and Inconel 617, is being developed by some countries for the material requirement of 700 ℃ super-ultracritical power plants. Meanwhile, weldability investigation is necessary for the developing materials since welding plays a key role on the construction of coal power plant boilers. In this work, the weldability of a kind of Ni-Fe base superalloy, one of the candidate materials for the high temperature components of 700 ℃ ultra-supercritical coal plant is studied. By welding thermal simulator (Gleeble 1500) experiments, the variation and evolution of mechanical properties and microstructure were analyzed for this Ni-Fe base superalloy, under welding thermal cycle treatment condition and aging treatment condition after welding thermal cycle. After the welding thermal cycle with a peak temperature of 1249 ℃, both the yield strength and tensile strength for solutioned Ni-Fe base superalloy at 25 and 700 ℃ were decreased, along with the increasing of ductility. After aging treatment to the Ni-Fe base superalloy experienced a welding thermal cycle, the yield strength and tensile strength at 25 ℃ were similar with those of the aged base metal. At 700 ℃, the strength of the heat affected zone (HAZ) after aging treatment is higher than that of the aged Ni-Fe base superalloy. Microstructure analysis showed that the γ' phase and MC carbide in Ni-Fe base superalloy dissolved during the high temperature welding thermal simulation experimental process. The solution of carbides in the grain boundaries caused a loss of a pinning effect on the migration of grain boundary and a decreasing of the strength. After the aging treatment to the Ni-Fe base superalloy experienced a high temperature welding thermal cycle, γ' and M23C6 carbide were precipitated. The precipitation of M23C6 at the grain boundaries during aging treatment was mainly due to the supply of the carbon from the MC which had been dissolved partially during former welding thermal cycle.

Key wordsNi-Fe base superalloy    welding thermal cycle    aging    γ'    carbide    mechanical property
收稿日期: 2013-06-26     
ZTFLH:  TG113.26  
基金资助:* 国家高技术研究发展计划资助项目2012AA03A501
作者简介: null

吴 栋, 男, 1988年生, 硕士生

图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
图9  
Sample Area percentage of grains with
different sizes
Number percentage of grains with
different sizes
Solution state
75~100 μm, 91.5%;
less than 20 μm, 8.5%
75~100 μm, 43%;
less than 20 μm, 57%
Welding thermal cycle state 75~100 μm, 94.6%;
less than 20 μm, 5.4%
75~100 μm, 54.3%;
less than 20 μm, 45.7%
表1  固溶态和焊接热循环态下的晶粒尺寸
Sample Temperature / ℃ Rp0.2 / MPa Rm / MPa A / %
Base metal 25
528 990 36.5
HAZ 299 679 39.8
Base metal 700
458 712 20.5
HAZ 253 523 31.1
表2  Ni-Fe基高温合金在25和700 ℃下的拉伸性能
图10  
图11  
图12  
图13  
图14  
Temperature / ℃ Fracture position Rp0.2 / MPa Rm / MPa A / %
25
Base metal 613 1055 28.0
HAZ 625 1076 27.6
HAZ 632 1078 26.0
700 Base metal 535 780 22.4
Base metal 530 775 21.6
Base metal 545 785 23.2
表3  在25和700 ℃下Ni-Fe基高温合金(含HAZ)时效态的拉伸性能
图15  
[1] Zhang H J, Zhou R C, Hou S F, Guo Y. Proc CSEE, 2011; 31: 108
[1] (张红军, 周荣灿, 侯淑芳, 郭 岩. 中国电机工程学报, 2011; 31: 108)
[2] Bugge J, Kaer S, Blum R. Energy, 2006; 31: 1437
[3] Wang J, Dong J X, Zhang M C, Xie X S. World Iron Steel, 2011; 11(2): 26
[3] (王 珏, 董建新, 张麦仓, 谢锡善. 世界钢铁, 2011; 11(2): 26)
[4] Hu P. Electric Power Construction, 2005; 26(6): 26
[4] (胡 平. 电力建设, 2005; 26(6): 26)
[5] Guo Y, Zhou R C, Hou S F, Zhang H J. Proc CSEE, 2010; 30: 86
[5] (郭 岩, 周荣灿, 侯淑芳, 张红军. 中国电机工程学报, 2010; 30: 86)
[6] Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Des, 2006; 27: 1120
[7] Cowen C J, Danielson P E, Jablonski P D. J Mater Eng Perform, 2011; 20: 1078
[8] Evans N D, Maziasz P J, Swindeman R W, Smith G D. Scr Mater, 2004; 51: 503
[9] Park Y S, Ham H S, Cho S M, Bae D H. In: Guagliano M, Vergani L eds., Proc 11th Int Conf on the Mechanical Behavior of Materials (ICM11), Amsterdam: Elsevier Science BV, 2011: 2645
[10] Mankins W L, Hosier J C, Bassford T H. Metall Mater Trans, 1974; 5B: 2579
[11] Guo J T, Du X K. Acta Metall Sin, 2006; 41: 1221
[11] (郭建亭, 杜秀魁. 金属学报, 2006; 41: 1221)
[12] Masuyama F. ISIJ Int, 2001; 41: 612
[13] Viswanathan R, Bakker W. J Mater Eng Perform, 2001; 10: 81
[14] Shi X. Electr Weld Mach, 2010; 40(2): 4
[14] (史 轩. 电焊机, 2010; 40(2): 4)
[15] Zhong W L,Wang W,Liang Y C,Lin J D,Lin Q R,Liu H W,Yu Y R. High Temperature Steam Oxidation of Supercritical Plant Metal. Beijing: China Electric Power Press, 2010: 30
[15] (钟万里,王 伟,梁永纯,林介东,林清如,刘洪文,虞月荣. 超临界机组金属高温蒸汽氧化. 北京: 中国电力出版社, 2010: 30)
[16] Ramirez J E. Weld J, 2012; 91: 122
[17] Mo W L, Lu S P, Li D Z, Li Y Y. J Mater Sci Technol, 2013; 29: 458
[18] Mo W L, Lu S P, Li D Z, Li Y Y. Mater Sci Eng, 2013; A582: 326
[19] Xu S, Dickson J I, Koul A K. Metall Mater Trans, 1998; 29A: 2687
[20] Shulga A V. J Alloys Compd, 2007; 436: 155
[21] Li Y Q,Liu J Y. Interstitial Phase of Superalloy. Beijing: Metallurgical Industry Press, 1990: 276
[21] (李玉清,刘锦岩. 高温合金间隙相. 北京: 冶金工业出版社, 1990: 276)
[22] Richards N L, Chaturvedi M C. Int Mater Rev, 2000; 45: 109
[23] Hu R, Bai G H, Li J S, Zhang J Q, Zhang T B, Fu H Z. Mater Sci Eng, 2012; A548: 83
[24] Jena A K, Chaturvedi M C. J Mater Sci, 1984; 19: 3121
[25] Garosshen T J, Mccarthy G P. Metall Trans, 1985; 16A: 1213
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[13] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.