Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 313-322    DOI: 10.3724/SP.J.1037.2013.00355
  论文 本期目录 | 过刊浏览 |
焊接热循环及时效处理对一种Ni-Fe基高温合金的组织和力学性能的影响*
吴 栋1) 王 鑫1,2) 董文超1) 陆善平1)
1) 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳110016
2) 中国工程物理研究院, 绵阳621900
EFFECTS OF WELDING THERMAL CYCLE AND AGING TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTY OF A Ni-Fe BASE SUPERALLOY
WU Dong 1) , WANG Xin 1,2), DONG Wenchao 1), LU Shanping 1)
1) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) China Academy of Engineering Physics, Mianyang 621900
全文: PDF(16002 KB)   HTML
摘要: 采用焊接热模拟实验, 研究了焊接热循环对一种700 ℃超超临界火电机组高温部件候选材料—Ni-Fe基高温合金组织和力学性能的影响. 结果表明, 固溶态Ni-Fe基高温合金在经过峰值温度为1249 ℃的焊接热循环后, 25和700 ℃屈服强度和抗拉强度都降低, 延伸率升高. 对经过焊接热循环后的合金再进行时效处理发现, 在25 ℃时, 焊接热循环后再时效样品的屈服强度和抗拉强度与母材时效态相当; 在700 ℃时, 焊接热循环后再时效样品的强度高于母材时效态的强度. Ni-Fe基高温合金在高温焊接热循环过程中, 强化相γ'以及难溶相MC发生溶解, 导致强度下降. 经过时效处理后, 强化相γ'再次大量析出, 同时晶界析出了M23C6. M23C6存在于晶界, 并没有造成拉伸性能的弱化. 高温焊接热循环使MC发生部分溶解, 为M23C6的时效析出提供了C元素.
关键词 Ni-Fe基高温合金焊接热循环时效γ'碳化物力学性能    
Abstract:Increasing the steam temperature and pressure of boilers in super-ultracritical power plant is an important approach to increase the plant efficiency. The steam temperature of the most efficient coal power plant is now around 620 ℃, representing an increase of about 80 ℃ in the past 40 years, which owes to the high temperature properties improvement of boiler components, such as the superheater and the reheater. Nickel base superalloy, for example Inconel 740 and Inconel 617, is being developed by some countries for the material requirement of 700 ℃ super-ultracritical power plants. Meanwhile, weldability investigation is necessary for the developing materials since welding plays a key role on the construction of coal power plant boilers. In this work, the weldability of a kind of Ni-Fe base superalloy, one of the candidate materials for the high temperature components of 700 ℃ ultra-supercritical coal plant is studied. By welding thermal simulator (Gleeble 1500) experiments, the variation and evolution of mechanical properties and microstructure were analyzed for this Ni-Fe base superalloy, under welding thermal cycle treatment condition and aging treatment condition after welding thermal cycle. After the welding thermal cycle with a peak temperature of 1249 ℃, both the yield strength and tensile strength for solutioned Ni-Fe base superalloy at 25 and 700 ℃ were decreased, along with the increasing of ductility. After aging treatment to the Ni-Fe base superalloy experienced a welding thermal cycle, the yield strength and tensile strength at 25 ℃ were similar with those of the aged base metal. At 700 ℃, the strength of the heat affected zone (HAZ) after aging treatment is higher than that of the aged Ni-Fe base superalloy. Microstructure analysis showed that the γ' phase and MC carbide in Ni-Fe base superalloy dissolved during the high temperature welding thermal simulation experimental process. The solution of carbides in the grain boundaries caused a loss of a pinning effect on the migration of grain boundary and a decreasing of the strength. After the aging treatment to the Ni-Fe base superalloy experienced a high temperature welding thermal cycle, γ' and M23C6 carbide were precipitated. The precipitation of M23C6 at the grain boundaries during aging treatment was mainly due to the supply of the carbon from the MC which had been dissolved partially during former welding thermal cycle.
Key wordsNi-Fe base superalloy    welding thermal cycle    aging    γ'    carbide    mechanical property
收稿日期: 2013-06-26     
ZTFLH:  TG113.26  
基金资助:国家高技术研究发展计划资助项目2012AA03A501
Corresponding author: LU Shanping, professor, Tel: (024)23971429, E-mail: shplu@imr.ac.cn   
作者简介: 吴栋, 男, 1988年生, 硕士生

引用本文:

吴栋, 王鑫, 董文超, 陆善平. 焊接热循环及时效处理对一种Ni-Fe基高温合金的组织和力学性能的影响*[J]. 金属学报, 2014, 50(3): 313-322.
. EFFECTS OF WELDING THERMAL CYCLE AND AGING TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTY OF A Ni-Fe BASE SUPERALLOY. Acta Metall Sin, 2014, 50(3): 313-322.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00355      或      https://www.ams.org.cn/CN/Y2014/V50/I3/313

[1] Zhang H J, Zhou R C, Hou S F, Guo Y. Proc CSEE, 2011; 31: 108
(张红军, 周荣灿, 侯淑芳, 郭 岩. 中国电机工程学报, 2011; 31: 108)
[2] Bugge J, Kaer S, Blum R. Energy, 2006; 31: 1437
[3] Wang J, Dong J X, Zhang M C, Xie X S. World Iron Steel, 2011; 11(2): 26
(王 珏, 董建新, 张麦仓, 谢锡善. 世界钢铁, 2011; 11(2): 26)
[4] Hu P. Electric Power Construction, 2005; 26(6): 26
(胡 平. 电力建设, 2005; 26(6): 26)
[5] Guo Y, Zhou R C, Hou S F, Zhang H J. Proc CSEE, 2010; 30: 86
(郭 岩, 周荣灿, 侯淑芳, 张红军. 中国电机工程学报, 2010; 30: 86)
[6] Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Des, 2006; 27: 1120
[7] Cowen C J, Danielson P E, Jablonski P D. J Mater Eng Perform, 2011; 20: 1078
[8] Evans N D, Maziasz P J, Swindeman R W, Smith G D. Scr Mater, 2004; 51: 503
[9] Park Y S, Ham H S, Cho S M, Bae D H. In: Guagliano M, Vergani L eds., Proc 11th Int Conf on the Mechanical Behavior of Materials (ICM11), Amsterdam: Elsevier Science BV, 2011: 2645
[10] Mankins W L, Hosier J C, Bassford T H. Metall Mater Trans, 1974; 5B: 2579
[11] Guo J T, Du X K. Acta Metall Sin, 2006; 41: 1221
(郭建亭, 杜秀魁. 金属学报, 2006; 41: 1221)
[12] Masuyama F. ISIJ Int, 2001; 41: 612
[13] Viswanathan R, Bakker W. J Mater Eng Perform, 2001; 10: 81
[14] Shi X. Electr Weld Mach, 2010; 40(2): 4
(史 轩. 电焊机, 2010; 40(2): 4)
[15] Zhong W L, Wang W, Liang Y C, Lin J D, Lin Q R, Liu H W, Yu Y R. High Temperature Steam Oxidation of Supercritical Plant Metal. Beijing: China Electric Power Press, 2010: 30
(钟万里, 王 伟, 梁永纯, 林介东, 林清如, 刘洪文, 虞月荣. 超临界机组金属高温蒸汽氧化. 北京: 中国电力出版社, 2010: 30)
[16] Ramirez J E. Weld J, 2012; 91: 122
[17] Mo W L, Lu S P, Li D Z, Li Y Y. J Mater Sci Technol, 2013; 29: 458
[18] Mo W L, Lu S P, Li D Z, Li Y Y. Mater Sci Eng, 2013; A582: 326
[19] Xu S, Dickson J I, Koul A K. Metall Mater Trans, 1998; 29A: 2687
[20] Shulga A V. J Alloys Compd, 2007; 436: 155
[21] Li Y Q, Liu J Y. Interstitial Phase of Superalloy. Beijing: Metallurgical Industry Press, 1990: 276
(李玉清, 刘锦岩. 高温合金间隙相. 北京: 冶金工业出版社, 1990: 276)
[22] Richards N L, Chaturvedi M C. Int Mater Rev, 2000; 45: 109
[23] Hu R, Bai G H, Li J S, Zhang J Q, Zhang T B, Fu H Z. Mater Sci Eng, 2012; A548: 83
[24] Jena A K, Chaturvedi M C. J Mater Sci, 1984; 19: 3121
[25] Garosshen T J, Mccarthy G P. Metall Trans, 1985; 16A: 1213
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
[15] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.