Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1498-1504    DOI: 10.11900/0412.1961.2014.00310
  本期目录 | 过刊浏览 |
温度对Zr-45Ti-5Al-3V合金准静态力学性能的影响
刘丁铭1,2, 张波3, 王杰1, 王爱民1(), 王沿东2, 张海峰1, 胡壮麒1
1 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
2 东北大学材料与冶金学院, 沈阳 110819
3 沈阳航空航天大学材料科学与工程学院, 沈阳 110136
INFLUENCE OF TEMPERATURE ON QUASI-STATIC MECHANICAL PROPERTIES OF Zr-45Ti-5Al-3V ALLOY
LIU Dingming1,2, ZHANG Bo3, WANG Jie1, WANG Aimin1(), WANG Yandong2, ZHANG Haifeng1, HU Zhuangqi1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 School of Materials and Metallurgy, Northeastern University, Shenyang 110819
3 Department of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136
引用本文:

刘丁铭, 张波, 王杰, 王爱民, 王沿东, 张海峰, 胡壮麒. 温度对Zr-45Ti-5Al-3V合金准静态力学性能的影响[J]. 金属学报, 2014, 50(12): 1498-1504.
Dingming LIU, Bo ZHANG, Jie WANG, Aimin WANG, Yandong WANG, Haifeng ZHANG, Zhuangqi HU. INFLUENCE OF TEMPERATURE ON QUASI-STATIC MECHANICAL PROPERTIES OF Zr-45Ti-5Al-3V ALLOY[J]. Acta Metall Sin, 2014, 50(12): 1498-1504.

全文: PDF(8161 KB)   HTML
摘要: 

在-100~200 ℃范围内不同应变速率(10-4, 10-3和10-2 s-1)下利用准静态拉伸和压缩实验研究了温度对Zr-45Ti-5Al-3V合金力学性能的影响. 结果表明, 在拉伸条件下, Zr-45Ti-5Al-3V合金具有较高的屈服强度和抗拉强度, 室温时其屈服强度超过1355 MPa, 但延伸率较小. 随着温度的升高, 合金的屈服强度和抗拉强度均下降, 而塑性变形量则上升. 在压缩条件下, 温度对屈服强度的影响与拉伸时一致, 而塑性变形量和断裂强度均在室温时最高, 其他温度下变化规律与拉伸时一致. 应变速率对合金的力学性能影响不大.

关键词 Zr-45Ti-5Al-3V合金力学性能温度应变速率    
Abstract

Zr alloys are widely used in pressurized-water reactors as fuel cladding materials due to their low neutron absorption cross section and excellent radiation resistance. Aside from the aforementioned properties, Zr alloys have high strength, relative low density and many other excellent physical and chemical properties that make them promising structural materials used in the aerospace environment. Zr-45Ti-5Al-3V alloy is a high strength zirconium alloy which is newly developed for use in aerospace environment. The temperature in space environment can change from -100 ℃ to more than 100 ℃, so it is necessary to study the mechanical behavior of Zr-45Ti-5Al-3V alloy under different temperatures. In this work, mechanical properties of Zr-45Ti-5Al-3V alloy under different temperatures (-100, 25, 100 and 200 ℃) and strain rates (10-4, 10-3 and 10-2 s-1) were investigated. The microstructure of the Zr-45Ti-5Al-3V alloy is characterized by SEM and XRD. It is shown that the alloy is comprised of two phases: a lath-like a phase with hcp structure is distributed uniformly in the matrix comprised of a b phase with bcc structure. Quasi-static mechanical properties of Zr-45Ti-5Al-3V alloy were studied in temperature range of -100~200 ℃ under various strain rates (10-4, 10-3 and 10-2 s-1) using the Instron 5528 electric universal material testing machine. The results showed that the alloy possessed yield strength of more than 1355 MPa at room temperature and higher fracture strength in tensile test, but the elongation was small. With increasing temperature, the yield strength and the fracture strength of the alloy decreased, while the amount of plastic deformation increased. Under the condition of compression test, the yield strength also decreased with temperature increasing, while the plasticity and fracture strength reached maximum at room temperature. The influence of strain rate on the mechanical properties of the alloy was not significant under both tensile and compression tests.

Key wordsZr-45Ti-5Al-3V alloy    mechanical property    temperature    strain rate
    
ZTFLH:  TG 146.414  
基金资助:*国家重点基础研究发展计划资助项目2010CB731602
作者简介: null

刘丁铭, 男, 1988年生, 博士生

图1  Zr-45Ti-5Al-3V合金的XRD谱和SEM像
图2  Zr-45Ti-5Al-3V合金在室温时不同应变速率ε?下的真应力-应变曲线
图3  室温下ε?=10-4 s-1时的拉伸断口形貌
图4  室温下不同ε?时的压缩断口形貌
图5  Zr-45Ti-5Al-3V合金的抗拉强度、屈服强度和延伸率随温度的变化
图6  ε?=10-4 s-1时Zr-45Ti-5Al-3V合金在不同温度下的拉伸断口形貌
图7  ε? =10-3 s-1时Zr-45Ti-5Al-3V合金在不同温度下压缩的应力-应变曲线
图8  Zr-45Ti-5Al-3V合金在不同温度下的压缩断口形貌
[1] Wang S H, Yang D Z, He S Y, Lv G. Mater Sci Technol, 2004; 12(6): 579
[1] (王淑花, 杨德庄, 何世禹, 吕 钢. 材料科学与工艺, 2004; 12(6): 579)
[2] Li X, Wang L, Yu X M. Mater Sci Eng, 2003; A33: 2987
[3] Qian J,Zhu Y L,Feng Y Y,Li F B. The Basic of Space Technology. Beijing: Science Press, 1986: 520
[3] (钱 骥,朱毅麟,冯英远,李凡本.空间技术基础. 北京: 科学出版社, 1986: 520)
[4] Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H. At Energy Sci Technol, 2005; 39(Sl): 2
[4] (赵文金, 周邦新, 苗 志, 彭 倩, 蒋有荣, 蒋宏曼, 庞 华. 原子能科学技术, 2005; 39(增刊): 2
[5] Saintoyant L, Legras L, Brchet Y. Scr Mater, 2011; 64: 418
[6] Farhat Z N. Mater Sci Eng, 2008; A474: 96
[7] Kondo R, Suyalatu, Tsutsumi Y, Doi H, Nomura N, Hanawa T. Mater Sci Eng, 2011; C31: 900
[8] Sun C, Tan J, Ying S H, Li C. Rare Met Mater Eng, 2008; 37(4): 584
[8] (孙 超, 谭 军, 应诗浩, 李 聪. 稀有金属材料与工程, 2008; 37(4): 584)
[9] Liang S X, Ma M Z, Jing R, Zhou Y K, Jing Q, Liu R P. Mater Sci Eng, 2012; A539: 42
[10] Liang S X, Ma M Z, Jing R, Zhang X Y, Liu R P. Mater Sci Eng, 2012; A532: 1
[11] Liang S X, Yin L X, Che H W, Jing R, Zhou Y K, Ma M Z, Liu R P. Mater Des, 2013; 52: 246
[12] Li Y, Zhang L, Zhu Z W, Li H, Wang A M, Zhang H F. Acta Metall Sin, 2014; 50: 19
[12] (李 烨, 张 龙, 朱正旺, 李 宏, 王爱民, 张海峰. 金属学报, 2014; 50: 19)
[13] Liang S X, Ma M Z, Jing R, Tan C L, Liu R P. Mater Sci Eng, 2012; A541: 67
[14] Wang J, Zhang H W, Wang A M, Li H, Fu H M, Zhu Z W, Zhang H F. Acta Metall Sin, 2012; 48: 636
[14] (王 杰, 张宏伟, 王爱民, 李 宏, 付华萌, 朱正旺, 张海峰. 金属学报, 2012; 48: 636)
[15] Liang S X, Yin L X, Jing R, Zhang X Y, Ma M Z, Liu R P. J Mater Res, 2013; 28: 2715
[16] Tan Y B, Liu W C, Yuan H, Liu R P, Zhang X Y. Metall Mater Trans, 2013; 44A: 5284
[17] Liang S X, Yin L X, Che H W, Tan C L, Jing R, Zhou Y K, Ma M Z, Liu R P. Mater Des, 2014; 55: 64
[18] Tan Y B, Yang L H, Tian C, Liu W C, Liu R P, Zhang X Y. Mater Sci Eng, 2014; A597: 171
[19] Tan Y B, Yang L H, Tian C, Liu R P, Zhang X Y, Liu W C. Mater Sci Eng, 2013; A577: 218
[20] Zhan Y Z, Zhang G D. Aerospace Mater Technol, 2003; (1): 1
[20] (湛永钟, 张国定. 宇航材料工艺, 2003; (1): 1)
[21] Cui Z Q,Tan Y C. Metallography and Heat Treatment. Beijing: Mechanical Industry Press, 2007: 186
[21] (崔忠圻,覃耀春. 金属学与热处理. 北京: 机械工业出版社, 2007: 186)
[22] Xu L, Guo R P, Bai C G, Lei J F, Yang R. J Mater Sci Technol, 2014, doi:10.1016/j.jmst.2014.04.011
[23] Venkatesh B D, Chen D L, Bhole S D. Mater Sci Eng, 2009; A506: 117
[24] Singh G, Sen I, Gopinath K, Ramamurty U. Mater Sci Eng, 2012; A540: 142
[25] Feng D.Physics of Metals. Beijing: China Machine Press, 1999: 354
[25] (冯 端. 金属物理学. 北京: 中国机械出版社, 1999: 354)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.